产品封面图
文献支持

无血清细胞冻存液 BAMBANKER®

收藏
  • 询价
  • FUJIFILM Wako已认证
  • 302-14681;306-14684;306-95921
  • 2025年07月16日
    avatar
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 询价记录
    • 文献和实验
    • 技术资料

    BAMBANKER®

    无血清细胞冻存液
     

    wako

     

    BAMBANKER® 是一种无血清细胞冻存液。
    可在 -80℃ 长期保存细胞(肿瘤细胞和常规细胞)。

    041559636875.jpg

     

     

    ◆产品特性

     

     ● 即用型细胞冻存液

     ● 无需分步降温,直接使用

     ● 无需稀释

     ● 无需程序降温盒

     ● -80℃ 长期保存

     ● 无血清

     

     

    无血清冻存液的优点

     

     ● 与含血清类型相比,批次间的成分组成差异小,可保持稳定的品质。

     ● 不含血清,因此没有因动物源的未知成分和感染物质所产生的影响与风险。

     ● 可对无血清驯化细胞进行冷冻,节省再驯化步骤。

     

     

    操作流程

     

    1)收集生长对数期*的细胞(5×105-1×107个细胞)

    2)用1mL 该细胞冻存液悬浮细胞,置于冻存管中,不需预冷,直接 -80℃ 冷冻保存,

         也可-80℃冻存 12 小时后转移至液氮中保存。

    3)用恒温箱或者水浴锅快速复苏细胞

          *冷冻细胞必须处于生长对数期

     

    blob.png

     

     

    无菌检测**

     

    内毒素:生色底物法

    支原体:荧光抗体法

    真菌和细菌:依据日本药典

    **:可索取检验证书)

     

     

    BAMBANKER® Direct

     

    BAMBANKER Direct 是“无血清型”细胞冻存液。

     

     

    BAMBANKER® Direct无需离心收集细胞


    blob.png  ① 不需冻存前预处理,操作简便

      ② 不需稀释,直接使用

      ③ 无需分步降温,直接使用

      ④ 可快速、长期冻存细胞(-80℃或液氮)

      ⑤ 不含血清

     

     

    02.jpg 


     

    BAMBANKER® Direct冻存步骤VS常规冻存步骤

     

    使用本产品无需经过离心等复杂步骤,只需往培养基内添加与培养液等量的 BAMBANKER Direct,再分装到冻存管,置于-80℃ 便可冻存细胞。

     

     

    应用

     

    【BAMBANKER使用例】

     

     细胞名称  保存时间 生存率
      BAMBANKER  公司A(含血清) 公司A(不含血清)

    P3U1

    (小鼠骨髓瘤细胞系)

    12个月 95% 95% 70%

    K562

    (人白血病细胞系)

    12个月 73% 70% 60%
    人体胃黏膜上皮细胞 10个月 100% 62% 56%

    human γδT cells

    (人γδT细胞)

    10个月 65% 37% 35%

     Daudi

    (人 B细胞系)

    12个月 100% 100% 92%

    PC12

    (大鼠源肾上腺嗜铬细胞瘤)

    11个月 95% 59% 20%

    human B cell line 

    (人B细胞系)

    9个月 74% 54% 35%

    OKT4

    (小鼠杂交瘤细胞)

    12个月 100% 100% 92%

    B细胞系

    (猴)

    10个月 56% 40% 18%

     

     

    低温冻存实验证明以下细胞保存完好

     

    3T3‐L1(小鼠前脂肪细胞系)

    A431(人扁平上皮癌细胞系)

    BAEC(牛主动脉血管内皮细胞系)

    Balb/3T3(小鼠成纤维细胞系)

    C2C12(小鼠骨骼肌细胞系)

     Daudi(人B细胞系)

    ECV304(人脐静脉内皮细胞系)

    H295R(肾上腺皮质细胞)

    HEK293(人胚胎肾细胞系)

    HEK293T(人胚胎肾细胞系)

    HeLa(人子宫颈癌细胞系)

    HeLa S3(人子宫颈癌细胞系)

    HepG2(人肝癌细胞系)

    HFF(人正常成纤维细胞系)

    Huh7(人肝癌细胞系)

    Jurkat(人白血病T细胞系)

    K562(人慢性骨髓性白血病细胞系)

    KATOIII (人胃癌上皮细胞系)

    KLM‐1(人胰腺癌细胞系)

    MDCK(犬肾小管上皮细胞系)

    MEF(小鼠胚胎成纤维细胞)

    NIH3T3(小鼠胚胎皮肤细胞)

    OKT4(小鼠杂交瘤细胞)

    OP9(小鼠骨髓基质细胞)

    P3U1(小鼠骨髓瘤细胞系)

    PANC‐1(人胰腺癌细胞系)

    PC12(大鼠源肾上腺嗜铬细胞瘤)

    RPE(人视网膜上皮细胞系)

    SNL(小鼠胚胎成纤维细胞)

    TSU‐Pr1(人前列腺癌细胞系)

    Vero(非洲绿猴肾细胞系)

    human γδT cells (人γδT细胞)

    human B cell line (人B细胞系)

    HDF(人皮肤成纤维细胞)  HCC20(人乳腺原发性导管癌细胞) BMMCs(人骨髓单核细胞系)
    BMMCs(猪骨髓单核细胞系) BMSCs(马骨髓间充质干细胞系) C1(人成纤维细胞系)
    CEF(牛胚胎成纤维细胞) CHO-K1(中国仓鼠卵巢细胞系) DPCs(大鼠牙髓细胞)
    DPCs(人牙髓细胞) ESCs(人胚胎干细胞) EVT(人绒毛外滋养层细胞)
    GH3(大鼠垂体瘤细胞) Gli36(胶质瘤细胞系) h1(人类胚胎干细胞)
    h9(人类胚胎干细胞) HN4(人口腔上皮细胞系)

    HS-RMS-2

    (多形性横纹肌肉瘤细胞系)

    IPS(人诱导性多能干细胞)

    LNCaP clone FGC

    (人前列腺癌细胞)

    MCF 10A(人正常乳腺细胞)

    MEF-BL/6-1

    (小鼠胚胎成纤维细胞)

    MNCs(人单核细胞) MSCs(大鼠间充质干细胞系)
    PBMCs(人外周血单个核细胞) PDL(人牙周膜细胞) pES(大鼠孤雌胚胎干细胞系)
    Sf9(草地贪夜蛾细胞系) U251(胶质瘤细胞系) U87(胶质瘤细胞系)
    VT(人绒毛膜滋养层细胞) 癌症干细胞 大鼠肝细胞

    猴B细胞系

    人外周血活化淋巴细胞

    永生化人肌肉细胞

    小鼠脾脏活化淋巴细胞

    小鼠ES细胞系

    人胃上皮细胞

    大鼠神经祖细胞 大鼠脂肪细胞 狗肿瘤细胞
    胶质瘤细胞系 牛脂肪细胞 牛子宫内膜上皮细胞
    人扁桃体细胞 人肝细胞 人骨髓CD34+细胞
    人巨噬细胞 人淋巴细胞 人输卵管上皮细胞
    人胎儿卵巢成纤维细胞 人胎儿卵巢体细胞 人自然杀伤细胞
    神经祖细胞 小鼠颅骨成骨细胞 心肌祖细胞
    猪成纤维细胞    

     

    ES细胞(小鼠)使用实例
    T.Hikichi,et al; Differentiation Potential of Parthenogenetic Embryonic Stem Cells Is Improved by Nuclear Transfer, Stem Cells, 2007, 25, 46-53

     

    更多相关资料请点击文字:

    BAMBANKER® 与自制冻存液的冻存效果比较


    ◆产品列表
     

    产品编号 产品名称 产品规格
    302-14681 BAMBANKER
     BAMBANKER冻存液
    120 mL
    306-14684 20 mLx5
    306-95921 BAMBANKER Direct
     BAMBANKER直接冻存液
    20 mL


    ※ 本页面产品仅供研究用。研究以外不可使用。

     

     

    Bambanker® 与其他相关产品的比较

     

    细胞冻存效果验证

     

     

    细胞冻存液类型

    1.Bambanker®

    2.Medium with serum (含血清,A公司)

    3.Serum-free Medium (无血清,A公司)

     

    实验结果

    *1:细胞-80℃的保存时间

     

    01.jpg

     

     

    ◆Q&A

     

    1.

    Q:为什么我使用了 BAMBANKER® 来保存细胞,但是存活率依然不高?

    A:请冻存前确保细胞处于生长对数期,并且冻存时细胞数目控制在 5×105~1×107/mL 冻存液。

       

    2.

    Q:我们实验室已经有固定的冻存程序了,换了你们的 BAMBANKER® 可以还继续用原来程序降温的方法冻存吗?

    A:虽然本产品可以无需程序降温冻存细胞,但如果通过程序降温盒等适当控制了温度下降的速度,效果更佳。

       

    3.

    Q:哪些细胞株(系)适合使用BAMBANKER® 来进行细胞冷冻保存?

    A:几乎所有细胞株(系)都可以使用 BAMBANKER® 进行冻存。对于较为宝贵的 ES/iPS 细胞的保存尤其适用。官网上所列举的细胞系均已经过测试验证。

    但也并不排除可能有某些细胞株是不适合使用 BAMBANER® 来进行冻存的,用户在没有确认是否可使用时,建议在进行正式细胞冻存之前先进行预实验。

       

    4.

    Q:无血清冻存液相比传统含血清冻存液有什么优势?

    A:无血清冻存液因不含有动物血清,质量更稳定,批间差小;同时未知生物成分或感染性物质污染细胞的几率也极低,尤其对于 ES/iPS 细胞等有可能用于再生医疗的细胞安全得以严格保障;可以直接冻存无血清培养的细胞,免去无血清再驯化的步骤;另外 BAMBANKER® 无血清细胞冻存液不需要像传统的血清冻存液需要程序降温,减少了用户的繁琐操作,节省了时间。

       

    5.

    Q:BAMBANKER® 在冷冻保存细胞的过程中起什么作用?

    A:BAMBANKER® 无血清细胞冻存液使用了 DMSO 等作为保护剂,在冻存细胞时能以1℃/min 左右的温度下降而逐渐冻结,在此过程中,细胞内的水分子被置换成冻结保护剂,抑制胞内和细胞周边的冰晶的形成,防止细胞膜和细胞器结构损伤,防止蛋白变质。

       

    6.

    Q:未使用的BAMBANKER® 无血清细胞冻存液应该如何保存?

    A:2-10℃ 避光保存。开封后尽快使用。请注意保质期为自生产日期起 24 个月。

       

    7.

    Q:BAMBANKER® 能否使用于医疗领域?

    A:BAMBANKER® 仅供科研使用,不能使用于人体或医疗领域。

     

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    • 作者
    • 内容
    • 询问日期
    图标文献和实验
    该产品被引用文献

     

    BAMBANKER™参考文献

     

    [1]

    Zhang C., Seo J., Nakamura T.   (2018) Cellular Approaches in Investigating Argonaute2-Dependent RNA   Silencing. In: Okamura K., Nakanishi K. (eds) Argonaute Proteins. Methods in   Molecular Biology, vol 1680. Humana Press, New York, NY.

    [2]

    Sharma, A., M¨ucke, M., &   Seidman, C. E. (2018). Human induced pluripotent stem cell production and   expansion from blood using a non-integrating viral reprogramming vector.   Current Protocols in Molecular Biology,122, e58. doi: 10.1002/cpmb.58.

    [3]

    Souta Motoike, Mikihito Kajiya,   Nao Komatsu, et al. Cryopreserved clumps of mesenchymal stem   cell/extracellular matrix complexes retain osteogenic capacity and induce   bone regeneration. Stem Cell Res Ther. 2018; 9: 73. Published online 2018 Mar   21. doi: 10.1186/s13287-018-0826-0.

    [4]

    Konuma T1, Kohara C1, Watanabe   E2, et al. Monocyte sub-sets and their phenotypes during treatment with   BCR-ABL1 tyrosine kinase inhibitors for Philadelphia chromosome-positive   leukemia. Hematol Oncol. 2018 Apr;36(2):451-456. doi: 10.1002/hon.2497. Epub   2018 Feb 12.

    [5]

    Srijaya Thekkeparambil   Chandrabose, Sandhya Sriram, et al. Amenable epigenetic traits of dental pulp   stem cells underlie high capability of xeno-free episomal reprogramming.

    Stem Cell Research & Therapy 2018 9:68.

    [6]

    Evans, Michael A. et al.   "Macrophage-Mediated Delivery of Light Activated Nitric Oxide Prodrugs with   Spatial, Temporal and Concentration Control." Chemical Science (2018): n.   pag. Web. doi:10.1039/C8SC00015H.

    [7]

    Jauregui, C.; Yoganarasimha, S.;   Madurantakam, P. Mesenchymal Stem Cells Derived from Healthy and Diseased   Human Gingiva Support Osteogenesis on Electrospun Polycaprolactone Scaffolds.   Bioengineering 2018, 5, 8.

    [8]

    Khamaikawin, Wannisa et al.   Modeling Anti-HIV-1 HSPC-Based Gene Therapy in Humanized Mice Previously   Infected with HIV-1. Molecular Therapy - Methods & Clinical Development ,   Volume 9,23-32.

    [9]

    Masako Okumura, Toyoaki Natsume,   Masato T Kanemaki, Tomomi Kiyomitsu. Optogenetic reconstitution reveals that   Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a   multi-arm ensemble. bioRxiv 277202; doi: https://doi.org/10.1101/277202

    [10]

    https://labchem.wako-chem.co.jp/journal/docs/proup10.pdf<链接>

    [11]

    Ince T A, Aster J C. In vitro   culture conditions for T-cell acute lymphoblastic leukemia/lymphoma: U.S.   Patent 9,683,217[P]. 2017-6-20.

    [12]

    Morris C D, Azadnia P, de Val N,   et al. Differential Antibody Responses to Conserved HIV-1 Neutralizing   Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140   Trimers[J]. mBio, 2017, 8(1): e00036-17.<链接>

    [13]

    Lee K, Saetern O C, Nguyen A, et   al. Derivation of Leptomeninges Explant Cultures from Postmortem Human Brain   Donors[J]. JoVE (Journal of Visualized Experiments), 2017 (119):   e55045-e55045.<链接>

    [14]

    Buenrostro J D, Corces R, Wu B,   et al. Single-cell epigenomics maps the continuous regulatory landscape of   human hematopoietic differentiation[J]. bioRxiv, 2017: 109843.<链接>

    [15]

    Edmonds R E, Garvican E R, Smith   R K W, et al. Influence of commonly used pharmaceutical agents on equine bone   marrow‐derived mesenchymal stem cell viability[J]. Equine veterinary journal,   2017, 49(3): 352-357.<链接>

    [16]

    Jitraruch S, Dhawan A, Hughes R   D, et al. Cryopreservation of Hepatocyte Microbeads for Clinical   Transplantation[J]. Cell transplantation, 2017.<链接>

    [17]

    Usarek E, Barańczyk-Kuźma A,   Kaźmierczak B, et al. Validation of qPCR reference genes in lymphocytes from   patients with amyotrophic lateral sclerosis[J]. PloS one, 2017, 12(3):   e0174317.<链接>

    [18]

    Gagnon E, Connolly A, D.obbins J,   et al. Studying Dynamic Plasma Membrane Binding of TCR-CD3 Chains During   Immunological Synapse Formation Using Donor-Quenching FRET and FLIM-FRET[J].   The Immune Synapse: Methods and Protocols, 2017: 259-289.<链接>

    [19]

    Foster K, Chaddock J, Penn C, et   al. Non-cytotoxic protein conjugates: U.S. Patent 9,474,807[P]. 2016-10-25.

    [20]

    Araki N, Iida M, Machida K.   Bioassay method for detecting physiologically active substance: U.S. Patent   9,316,588[P]. 2016-4-19.

    [21]

    Sazinsky S, Michaelson J S,   Sathyanarayanan S, et al. Antibodies to icos: U.S. Patent Application   15/076,867[P]. 2016-3-22

    [22]

    李凯. Studies on Innate Immune   Activation by HBV Infection and Its Sensing Mechanism in Hepatocytes[J].   2016.

    [23]

    Ip L R H. Effect of IN.PP4B loss   on DNA repair and treatment strategies in ovarian cancer[D]. UCL (University   College London), 2016.

    [24]

    Thakkar A. Novel hormonal   combination therapy for triple negative breast cancer[D]. University of   Miami, 2016.

    [25]

    Pakdaman Y. In-vitro   characterization of STUB1 mutations in recessively inherited spinocerebellar   ataxia-16[D]. The University of Bergen, 2016.

    [26]

    Caxaria S. Induced pluripotent   stem cells (iPSCs) for research and therapy: induction of hepatic   differentiation in iPSCs and evaluation of their quality as a model of in   vivo development in the context of coagulation[D]. UCL (University College   London), 2016.<链接>

    [27]

    Bayne R A, Donnachie D J,   Kinnell H L, et al. BMP signalling in human fetal ovary somatic cells is   modulated in a gene-specific fashion by GREM1 and GREM2[J]. MHR: Basic   science of reproductive medicine, 2016, 22(9): 622-633.<链接>

    [28]

    Friedrich D. HIF-1 [alpha]   Drives Fungal Immunity in Human Macrophages[D]. Universität zu Lübeck,   2016.<链接>

    [29]

    Yasuda M, Kawabata J,   Akieda-Asai S, et al. Guanylyl cyclase C and guanylin reduce fat droplet   accumulation in cattle mesenteric adipose tissue[J]. The Journal of   Veterinary Science, 2016.<链接>

    [30]

    Campa M J, Moody M A, Zhang R,   et al. Interrogation of individual intratumoral B lymphocytes from lung   cancer patients for molecular target discovery[J]. Cancer Immunology,   Immunotherapy, 2016, 65(2): 171-180.<链接>

    [31]

    Kobayashi T, Yagi Y, Nakamura T.   Development of Genome Engineering Tools from Plant-Specific PPR Proteins   Using Animal Cultured Cells[J]. Chromosome and Genomic Engineering in Plants:   Methods and Protocols, 2016: 147-155.<链接>

    [32]

    Shikata H, Kaku M, Kojima S I,   et al. The effect of magnetic field during freezing and thawing of rat bone   marrow-derived mesenchymal stem cells[J]. Cryobiology, 2016, 73(1):   15-19.<链接>

    [33]

    Hirakawa M, Matos T, Liu H, et   al. Low-dose IL-2 selectively activates sub-sets of CD4+ Tregs and NK   cells[J]. JCI insight, 2016, 1(18).<链接>

    [34]

    Durruthy-Durruthy J, Sebastiano   V, Wossidlo M, et al. The primate-specific noncoding RNA HPAT5 regulates   pluripotency during human preimplantation development and nuclear   reprogramming[J]. Nature genetics, 2016, 48(1): 44-52.<链接>

    [35]

    Caxaria S, Arthold S, Nathwani A   C, et al. Generation of integration-free patient specific iPS cells using   episomal plasmids under feeder free conditions[J]. Patient-Specific Induced   Pluripotent Stem Cell Models: Generation and Characterization, 2016: 355-366.<链接>

    [36]

    Nonomura Y, Otsuka A, Nakashima   C, et al. Peripheral blood Th9 cells are a possible pharmacodynamic biomarker   of nivolumab treatment eff.icacy in metastatic melanoma patients[J].   Oncoimmunology, 2016, 5(12): e1248327.<链接>

    [37]

    Burridge P W, Diecke S, Matsa E,   et al. Modeling cardiovascular diseases with patient-specific human   pluripotent stem cell-derived cardiomyocytes[J]. Patient-Specific Induced   Pluripotent Stem Cell Models: Generation and Characterization, 2016: 119-130.<链接>

    [38]

    Mendonça M C P, Soares E S, de   Jesus M B, et al. PEGylation of Reduced Graphene Oxide Induces Toxicity in   Cells of the Blood–Brain Barrier: An in Vitro and in Vivo Study[J]. Molecular   pharmaceutics, 2016, 13(11): 3913-3924.<链接>

    [39]

    Eldaim A, Hashimoto O, Ohtsuki   H, et al. Expression of uncoupling protein 1 in bovine muscle cells[J].   Journal of animal science, 2016, 94(12): 5097-5104.<链接>

    [40]

    Zhen A, Rezek V, Youn C, et al.   Stem-cell based engineered immunity against HIV infection in the humanized   mouse model[J]. JoVE (Journal of Visualized Experiments), 2016 (113):   e54048-e54048.<链接>

    [41]

    Bastian N A, Bayne R A,   Hummitzsch K, et al. Regulation of fibrillins and modulators of TGFβ in fetal   bovine and human ovaries[J]. Reproduction, 2016, 152(2): 127-137.<链接>

    [42]

    Eto K, Takayama N, Nakamura S,   et al. Method for producing differentiated cells: U.S. Patent 9,200,254[P].   2015-12-1.

    [43]

    Eto K, Takayama N, Nakamura S,   et al. Novel Method for Producing Differentiated Cells: U.S. Patent   Application 14/925,508[P]. 2015-10-28.

    [44]

    Yamashita J, Takeda M.   Cd82-positive cardiac progenitor cells: U.S. Patent Application   15/308,147[P]. 2015-4-16.

    [45]

    Cai Y, Sugimoto C, Arainga M, et   al. Preferential Destruction of Interstitial Macrophages over Alveolar   Macrophages as a Cause of Pulmonary Disease in Simian Immunodeficiency   Virus–Infected Rhesus Macaques[J]. The Journal of Immunology, 2015, 195(10):   4884-4891.<链接>

    [46]

    Kojima S I, Kaku M, Kawata T, et   al. Cranial suture-like gap and bone regeneration after transplantation of   cryopreserved MSCs by use of a programmed freezer with magnetic field in   rats[J]. Cryobiology, 2015, 70(3): 262-268.<链接>

    [47]

    Egawa E Y, Kitamura N, Nakai R,   et al. A DNA hybridization system for labeling of neural stem cells with SPIO   nanoparticles for MRI monitoring post-transplantation[J]. Biomaterials, 2015,   54: 158-167.<链接>

    [48]

    Durruthy J D, Sebastiano V.   Derivation of GMP-Compliant Integration-Free hiPSCs Using Modified mRNAs[J].   Stem Cells and Good Manufacturing Practices: Methods, Protocols, and   Regulations, 2015: 31-42.<链接>

    [49]

    Sato Y, Sasaki T, Takahashi S,   et al. Development of a highly reproducible system to evaluate inhibition of   cytochrome P450 3A4 activity by natural medicines[J]. Journal of Pharmacy   & Pharmaceutical Sciences, 2015, 18(4): 316-327.<链接>

    [50]

    Burridge P W, Holmström A, Wu J   C. Chemically defined culture and cardiomyocyte differentiation of human   pluripotent stem cells[J]. Current protocols in human genetics, 2015: 21.3.   1-21.3. 15.<链接>

    [51]

    Käding N. Hypoxia Regulates Host   Cell Metabolism and Thereby Enhancing Clamydia Pneumonia Growth[D]. Zentrale   Hochschulbibliothek Lübeck, 2015.<链接>

    [52]

    Lu S. Calcium Dependent   Regulatory Mechanism in Wolfram Syndrome: A Dissertation[J]. 2015.

    [53]

    Garvican E R, Cree S, Bull L, et   al. Viability of equine mesenchymal stem cells during transport and   implantation[J]. Stem cell research & therapy, 2014, 5(4): 1.<链接>

    [54]

    Deng X, Terunuma H, Nieda M.   Method for producing nk cell-enriched blood preparation: U.S. Patent   Application 14/508,745[P]. 2014-10-7.

    [55]

    Foster K, Chaddock J, Penn C, et   al. Non-cytotoxic protein conjugates: U.S. Patent 8,778,634[P]. 2014-7-15.

    [56]

    Ramathal C Y, Dumuthy-Durruthy   J, Pera R A R, et al. Generation of male germ cells: U.S. Patent Application   14/904,396[P]. 2014-7-10

    [57]

    Ince T A. Assays, methods and   kits for analyzing sensitivity and resistance to anti-cancer drugs,   predicting a cancer patient's prognosis, and personalized treatment   strategies: U.S. Patent Application 14/894,595[P]. 2014-6-4.

    [58]

    Nishio M, Saeki K.   Differentiation of human pluripotent stem cells into highly functional   classical brown adipocytes[J]. Methods Enzymol, 2014, 537: 177-197.<链接>

    [59]

    Durruthy-Durruthy J, Briggs S F,   Awe J, et al. Rapid and eff.icient conversion of integration-free human   induced pluripotent stem cells to GMP-grade culture conditions[J]. PloS one,   2014, 9(4): e94231.<链接>

    [60]

    Koido S, Homma S, Okamoto M, et   al. Treatment with Chemotherapy and Dendritic Cells Pulsed with Multiple   Wilms' Tumor 1 (WT1)–Specific MHC Class I/II–Restricted Epitopes for   Pancreatic Cancer[J]. Clinical Cancer Research, 2014, 20(16):   4228-4239.<链接>

    [61]

    Patz Jr E F. Antibodies   Expressed by Intratumoral B Cells as the Basis for a Diagnostic Test for Lung   Cancer[R]. DUKE UNIV DURHAM NC, 2014.<链接>

    [62]

    Kaku M, Shimasue H, Ohtani J, et   al. A case of tooth autotransplantation after long-term cryopreservation   using a programmed freezer with a magnetic field[J]. The Angle Orthodontist,   2014, 85(3): 518-524.<链接>

    [63]

    Kaku M, Koseki H, Kojima S, et   al. Cranial bone regeneration after cranioplasty using cryopreserved   autogenous bone by a programmed freezer with a magnetic field in rats[J].   CryoLetters, 2014, 35(6): 451-461.<链接>

    [64]

    Koido S, Kinoshita S, Mogami T,   et al. Immunological assessment of cryotherapy in breast cancer patients[J].   Anticancer research, 2014, 34(9): 4869-4876.<链接>

    [65]

    Sazuka S, Katsuno T, Nakagawa T,   et al. Fibrocytes are involved in inflammation as well as fibrosis in the   pathogenesis of Crohn's disease[J]. Digestive diseases and sciences, 2014,   59(4): 760-768.<链接>

    [66]

    Lin S L, Lee S Y, Lin Y C, et   al. Evaluation of mechanical and histological properties of cryopreserved   human premolars under short-term preservation: A preliminary study[J].   Journal of Dental Sciences, 2014, 9(3): 244-248.<链接>

    [67]

    Poole E, Reeves M, Sinclair J H.   The use of primary human cells (fibroblasts, monocytes, and others) to assess   human cytomegalovirus function[J]. Human Cytomegaloviruses: Methods and   Protocols, 2014: 81-98.<链接>

    [68]

    Garvican E R, Dudhia J, Alves A   L, et al. Mesenchymal stem cells modulate release of matrix proteins from   tendon surfaces in vitro: a potential beneficial therapeutic effect[J].   Regenerative medicine, 2014, 9(3): 295-308.<链接>

    [69]

    Skinner J A, Zurawski S M,   Sugimoto C, et al. Immunologic characterization of a rhesus macaque H1N1   challenge model for candidate influenza vaccine assessment[J]. Clinical and   Vaccine Immunology, 2014: CVI. 00547-14.<链接>

    [70]

    Terunuma H, Deng X, Nieda M.   Method for producing nk cell-enriched blood preparation: U.S. Patent   Application 14/780,394[P]. 2013-3-27.

    [71]

    Cho M, Yamazaki T, Endo M, et   al. Anti-Phospholipase D4 Antibody: U.S. Patent Application 14/375,266[P].   2013-1-31.

    [72]

    Bhandari S. Radiological,   clinical and laboratory based studies in the pathogenesis of desmoid tumours   in familial adenomatous polyposis[J]. 2013.

    [73]

    Gonzàlez Juncà A. Study of   molecular mechanisms implicated in the TGF-beta oncogenic effect in   Glioma[J]. 2013.

    [74]

    Koseki H, Kaku M, Kawata T, et   al. Cryopreservation of osteoblasts by use of a programmed freezer with a   magnetic field[J]. CryoLetters, 2013, 34(1): 10-19.<链接>

    [75]

    Naito H, Yoshimura M, Mizuno T,   et al. The advantages of three‐dimensional culture in a collagen hydrogel for   stem cell differentiation[J]. Journal of Biomedical Materials Research Part   A, 2013, 101(10): 2838-2845.<链接>

    [76]

    Stec M, Baran J, Szatanek R, et   al. Properties of monocytes generated from haematopoietic CD34+ stem cells   from bone marrow of colon cancer patients[J]. Cancer Immunology,   Immunotherapy, 2013, 62(4): 705-713.<链接>

    [77]

    Müller L, Brighton L E, Carson J   L, et al. Culturing of human nasal epithelial cells at the air liquid   interface[J]. Journal of visualized experiments: JoVE, 2013 (80).<链接>

    [78]

    Kalaszczynska I, Ruminski S,   Platek A E, et al. Substantial differences between human and ovine   mesenchymal stem cells in response to osteogenic media: how to explain and   how to manage?[J]. BioResearch open access, 2013, 2(5): 356-363.<链接>

    [79]

    Tamai Y, Hasegawa A, Takamori A,   et al. Potential Contribution of a Novel Tax Epitope–Specific CD4+ T Cells to   Graft-versus-Tax Effect in Adult T Cell Leukemia Patients after Allogeneic   Hematopoietic Stem Cell Transplantation[J]. The Journal of Immunology, 2013,   190(8): 4382-4392.<链接>

    [80]

    Kasai K, Nakashima H, Liu F, et   al. Toxicology and biodistribution studies for MGH2. 1, an oncolytic virus   that expresses two prodrug-activating genes, in combination with prodrugs[J].   Molecular Therapy-Nucleic Acids, 2013, 2: e113.<链接>

    [81]

    Deng X, Terunuma H, Nieda M.   Method for producing nk cell-enriched blood preparation: U.S. Patent   Application 13/980,777[P]. 2012-1-17.

    [82]

    Somm E, Bonnet N, Martinez A, et   al. A botulinum toxin–derived targeted secretion inhibitor downregulates the   GH/IGF1 axis[J]. The Journal of clinical investigation, 2012, 122(9):   3295.<链接>

    [83]

    Takaoka E, Sonobe H, Akimaru K,   et al. Multiple sites of highly amplified DNA sequences detected by molecular   cytogenetic analysis in HS-RMS-2, a new pleomorphic rhabdomyosarcoma cell   line[J]. American journal of cancer research, 2012, 2(2): 141.<链接>

    [84]

    Fahlbusch F B, Dawood Y, Hartner   A, et al. Cullin 7 and Fbxw 8 expression in trophoblastic cells is regulated   via oxygen tension: implications for intrauterine growth restriction?[J]. The   Journal of Maternal-Fetal & Neonatal Medicine, 2012, 25(11): 2209-2215.<链接>

    [85]

    Aloé S, Weber F, Behr B, et al.   Modulatory effects of bovine seminal plasma on uterine inflammatory   processes[J]. Reproduction in domestic animals, 2012, 47(1): 12-19.<链接>

    [86]

    Gupta A, Bhakta S. An integrated   surrogate model for screening of drugs against Mycobacterium-tuberculosis[J].   Journal of antimicrobial chemotherapy, 2012, 67(6): 1380-1391.<链接>

    [87]

    Saeki K. Feeder-Free Culture for   High Eff.iciency Production of Subculturable Vascular Endothelial Cells from   Human Embryonic Stem Cells[J]. Human Embryonic and Induced Pluripotent Stem   Cells: Lineage-Specific Differentiation Protocols, 2012: 277-294.<链接>

    [88]

    Yamazaki T, Okabe H, Kobayashi   S, et al. Cancer stem cell mass and process for production thereof: U.S.   Patent Application 13/878,181[P]. 2011-10-6.

    [89]

    Deng X, Terunuma H, Nieda M.   Method for producing nk cell-enriched blood product: U.S. Patent Application   13/577,476[P]. 2011-2-4.

    [90]

    Sugii S, Kida Y, Berggren W T,   et al. Feeder-independent ips cell derivation from human and mouse adipose   stem cells[J]. Nature protocols, 2011, 6(3): 346.<链接>

    [91]

    Shinada T, Akimoto T, Zhu Y, et   al. Modulation of viability of live cells by focused ion‐beam exposure[J].   Biotechnology and bioengineering, 2011, 108(1): 222-225.<链接>

    [92]

    Huang M S, Chang W J, Huang H M,   et al. Effects of transportation time after extraction on the magnetic   cryopreservation of pulp cells of rat dental pulp[J]. Journal of Dental   Sciences, 2011, 6(1): 48-52.<链接>

    [93]

    Sato D, Suzuki Y, Kano T, et al.   Tonsillar TLR9 expression and eff.icacy of tonsillectomy with steroid pulse   therapy in IgA nephropathy patients[J]. Nephrology Dialysis Transplantation,   2011, 27(3): 1090-1097.<链接>

    [94]

    Kamada H, Kaku M, Kawata T, et   al. In-vitro and in-vivo study of periodontal ligament cryopreserved with a   magnetic field[J]. American Journal of Orthodontics and Dentofacial   Orthopedics, 2011, 140(6): 799-805.<链接>

    [95]

    Bui H T, Wakayama S, Mizutani E,   et al. Essential role of paternal chromatin in the regulation of   transcriptional activity during mouse preimplantation development[J].   Reproduction, 2011, 141(1): 67-77.<链接>

    [96]

    Takata Y, Kishine H, Sone T, et   al. Generation of iPS cells using a BacMam multigene expression system[J].   Cell structure and function, 2011, 36(2): 209-222.<链接>

    [97]

    Benko Z, Zhao R Y. Zeocin for   selection of bleMX6 resistance in fission yeast[J]. Biotechniques, 2011,   51(1): 57-60.<链接>

    [98]

    Abedini S, Kaku M, Kawata T, et   al. Effects of cryopreservation with a newly-developed magnetic field   programmed freezer on periodontal ligament cells and pulp tissues[J].   Cryobiology, 2011, 62(3): 181-187.<链接>

    [99]

    Oshima-Sudo N, Li Q, Hoshino Y,   et al. Optimized method for culturing outgrowth endothelial progenitor   cells[J]. Inflammation and Regeneration, 2011, 31(2): 219-227.<链接>

    [100]

    Araki N. Bioassay method for   antibody against thyroid-stimulating hormone receptor, measurement kit for   the antibody, and novel genetically modified cell for use in the bioassay   method or the measurement kit: U.S. Patent Application 13/381,402[P]. 2010-6-24.

    [101]

    Foster K, Chaddock J, Marks P,   et al. Fusion proteins: U.S. Patent 7,659,092[P]. 2010-2-9.

    [102]

    Mieno S, Boodhwani M, Robich M   P, et al. Effects of diabetes mellitus on VEGF‐induced proliferation response   in bone marrow derived endothelial progenitor cells[J]. Journal of cardiac   surgery, 2010, 25(5): 618-625.<链接>

    [103]

    Kaku M, Kamada H, Kawata T, et   al. Cryopreservation of periodontal ligament cells with magnetic field for   tooth banking[J]. Cryobiology, 2010, 61(1): 73-78.<链接>

    [104]

    Kawata T, Kaku M, Fujita T, et   al. Water molecule movement by a magnetic field in freezing for tooth   banking[J]. Biomedical Research, 2010, 21(4).<链接>

    [105]

    Lee S Y, Chiang P C, Tsai Y H,   et al. Effects of cryopreservation of intact teeth on the isolated dental   pulp stem cells[J]. Journal of Endodontics, 2010, 36(8): 1336-1340.<链接>

    [106]

    Huang Y H, Yang J C, Wang C W,   et al. Dental stem cells and tooth banking for regenerative medicine[J].   Journal of Experimental & Clinical Medicine, 2010, 2(3):   111-117.<链接>

    [107]

    Kwon H J, Enomoto T, Shimogawara   M, et al. Benchmarks[J]. Biotechniques, 2010, 48: 460-462.<链接>

    [108]

    Shimizu Y, Takamori A,   Utsunomiya A, et al. Impaired Tax‐specific T‐cell responses with insuff.icient   control of HTLV‐1 in a subgroup of individuals at asymptomatic and smoldering   stages[J]. Cancer science, 2009, 100(3): 481-489.<链接>

    [109]

    Park H S, Cho S G, Park M J, et   al. Bone marrow T cells are superior to splenic T cells to induce chimeric   conversion after non-myeloablative bone marrow transplantation[J]. The Korean   journal of internal medicine, 2009, 24(3): 252.<链接>

    [110]

    Enosawa S, Miyamoto Y, Ikeya T.   Frozen cell immobilized product, primary hepatocyte culture tool, and method   for producing primary hepatocyte culture tool: U.S. Patent Application   12/738,809[P]. 2008-9-11.

    [111]

    DePinho R A, Stommel J M.   Receptor tyrosine kinase profiling: U.S. Patent Application 12/450,820[P].   2008-4-11.

    [112]

    Mieno S, Clements R T, Boodhwani   M, et al. Characteristics and Function of Cryopreserved Bone Marrow–Derived   Endothelial Progenitor Cells[J]. The Annals of thoracic surgery, 2008, 85(4):   1361-1366.<链接>

    [113]

    Warren C. The Response of HN4   Cells to Porphyromonas gingivalis DNA[D]. , 2008.

    [114]

    Hikichi T, Wakayama S, Mizutani   E, et al. Differentiation potential of parthenogenetic embryonic stem cells   is improved by nuclear transfer[J]. Stem Cells, 2007, 25(1): 46-53.<链接>

    [115]

    Zaidi S K, Pande S, Pratap J, et   al. Runx2 deficiency and defective subnuclear targeting bypass senescence to   promote immortalization and tumorigenic potential[J]. Proceedings of the   National Academy of Sciences, 2007, 104(50): 19861-19866.<链接>

    [116]

    Hikichi T, Wakayama S, Mizutani   E, et al. Differentiation potential of parthenogenetic embryonic stem cells   is improved by nuclear transfer[J]. Stem Cells, 2007, 25(1): 46-53.<链接>

    [117]

    Liu D G, Kobayashi T, Onishi A,   et al. Relation between human decay‐accelerating factor (hDAF) expression in   pig cells and inhibition of human serum anti‐pig cytotoxicity: value of   highly expressed hDAF for xenotransplantation[J]. Xenotransplantation, 2007,   14(1): 67-73.<链接>

    [118]

    Ishii H, Iinuma A, Osumi K, et   al. Canine tumor treatment method, pharmaceutical formulation applied   thereto, and method of cryogenically preserving cells used therewith: U.S.   Patent Application 11/465,892[P]. 2006-8-21.

    [119]

    Hatoya S, Sugiyama Y, Torii R,   et al. Effect of co-culturing with embryonic fibroblasts on IVM, IVF and IVC   of canine oocytes[J]. Theriogenology, 2006, 66(5): 1083-1090.<链接>

    [120]

    Sasaki M, Kato Y, Yamada H, et   al. Development of a novel serum‐free freezing medium for mammalian cells   using the silk protein sericin[J]. Biotechnology and applied biochemistry,   2005, 42(2): 183-188.<链接>

    [121]

    Haynes J E. Pseudonyms of   Authors: Including Anonyms and Initialisms[M]. JE Haynes, 1882.<链接>

     

     

    相关实验
    • TaqMan® 检测的工作原理

      Taq Talk 荧光定量 PCR 系列课程之【TaqMan®检测的工作原理】基于 TaqMan®探针法的 qPCR 检测可提供比染料法更好的灵敏度和特异性

    • Vybrant® DyeCycle Green and Orange Stains

      Stability Vybrant® DyeCycle™ Green stain Vybrant® DyeCycle™ Orange stain 400 μL 5 mM solution in dimethyl sulfoxide (DMSO

    • NuPAGE® 凝胶试剂帮你解开电泳误区

      相关专题   误区:凝胶试剂总是修饰我的蛋白 事实:NuPAGE® 凝胶试剂实际上保护了您的蛋白 更中性pH是关键 tris-甘氨酸凝胶系统的根本缺点是样品制备过程中的蛋白降解。在使用pH 6.8的tris-甘氨酸样品缓冲液时,样品在缓冲液中加热,因tris-甘氨酸的负温度系数导致pH值下降。这最终导致蛋白水解。 NuPAGE® 凝胶试剂通过维持较高的样品缓冲液pH值,保留了蛋白样品的完整

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    询价
    富士胶片和光(广州)贸易有限公司
    2025年07月16日询价
    询价
    北京云肽生物科技有限公司
    2025年07月12日询价
    ¥560
    蒂科(上海)生物科技有限公司
    2025年11月15日询价
    ¥930
    杭州囊萤科技有限公司
    2025年09月13日询价
    ¥260
    广州市左克生物科技发展有限公司
    2025年07月25日询价
    文献支持
    无血清细胞冻存液 BAMBANKER®
    询价