产品封面图
文献支持

8通道小鼠全身体积描记系统

收藏
  • 询价
  • 塔望科技
  • WBP-8M
  • 2026年01月26日
    avatar
  • 企业认证

    • 详细信息
    • 文献和实验
    • 技术资料

    产品描述 

    塔望科技研发的全身体积描记系统(whole-body plethysmograph,WBP)可对清醒自由活动动物呼吸参数进行测量,如呼吸频率,潮气量,气道高反应性测试(Airway hyperresponsiveness,AHR)等。测试过程中,动物可以处于清醒自由状态,避免了创伤性气管切开及麻醉的影响,使实验过程更加简便,用于呼吸系统模型动物对药物等反应性研究,呼吸性药物的药理和毒理学研究,特别适合于大批量动物快速初筛试验,适合长期跟踪研究和重复性筛查。

     

    产品特点

    · 不需要做手术,操作简单

    · 可多通道同时监测

    · 可在动物在自然状态下呼吸的研究以及长期跟踪实验,适合进行药物初筛

    · 具有药物气溶胶雾化模块

    · 具有自动标定功能

    · 具有饮水口和食物口,可进行长期连续监测

    · 可选配测量心电、血压、体温、心率等指标,可与植入式遥测设备联合使用

    · 具有分析软件,数据可保存至excel或txt格式

     

    可选配的功能模块

    · 同步视频监测:同步的视频录像文件

    · 咳嗽检测:通过软件自动监测咳嗽事件

    · 其它生理指标测量:可在麻醉或清醒状态下测量心电、血压、体温、心率等指标,可与植入式遥测设备联合使用

     

    检测参数

     

    全身体积描记系统(图1)

     

    Ti:吸气时间(s)

    Te:呼气时间(s)

    PIF:最大吸气流速(ml/s)

    PEF:最大呼气流速(ml/s)

    Volbal:吸气时间/呼气时间

    F:呼吸频率(次/min)

    Vt:潮气量(ml)

    Mv:分钟通气量(ml)

    AV:累积体积(ml)

    EF50:呼出50%气量时对应的呼气流速(ml/s)

    EIP:吸气末暂停时间

    EEP:呼气末暂停时间

    TR:松弛时间

    PenH:增强呼气间歇(enhanced pause)

    Rpef:相对时间

     

    适用领域 

    · 各种呼吸疾病研究,如:哮喘、肺纤维化、肺损伤、ARDS、肺癌等

    · 安全药理:药物对呼吸系统的影响

    · 睡眠呼吸:监测动物低通气、阻塞性呼吸暂停等

    · 环境毒理:环境污染物对动物呼吸的影响

    · 吸入式毒理:染毒物质对呼吸系统的毒性影响

    · 高原医学:高原环境对呼吸系统的影响

    · 其它需要对呼吸参数评价的场合

    产品描述 

    塔望科技研发的全身体积描记系统(whole-body plethysmograph,WBP)可对清醒自由活动动物呼吸参数进行测量,如呼吸频率,潮气量,气道高反应性测试(Airway hyperresponsiveness,AHR)等。测试过程中,动物可以处于清醒自由状态,避免了创伤性气管切开及麻醉的影响,使实验过程更加简便,用于呼吸系统模型动物对药物等反应性研究,呼吸性药物的药理和毒理学研究,特别适合于大批量动物快速初筛试验,适合长期跟踪研究和重复性筛查。

    产品特点

    · 不需要做手术,操作简单

    · 可多通道同时监测

    · 可在动物在自然状态下呼吸的研究以及长期跟踪实验,适合进行药物初筛

    · 具有药物气溶胶雾化模块

    · 具有自动标定功能

    · 具有饮水口和食物口,可进行长期连续监测

    · 可选配测量心电、血压、体温、心率等指标,可与植入式遥测设备联合使用

    · 具有分析软件,数据可保存至excel或txt格式

     

    可选配的功能模块

     

    · 同步视频监测:同步的视频录像文件

    · 咳嗽检测:通过软件自动监测咳嗽事件

    · 其它生理指标测量:可在麻醉或清醒状态下测量心电、血压、体温、心率等指标,可与植入式遥测设备联合使用

     

    检测参数

     

    全身体积描记系统(图1)

     

    Ti:吸气时间(s)

    Te:呼气时间(s)

    PIF:最大吸气流速(ml/s)

    PEF:最大呼气流速(ml/s)

    Volbal:吸气时间/呼气时间

    F:呼吸频率(次/min)

    Vt:潮气量(ml)

    Mv:分钟通气量(ml)

    AV:累积体积(ml)

    EF50:呼出50%气量时对应的呼气流速(ml/s)

    EIP:吸气末暂停时间

    EEP:呼气末暂停时间

    TR:松弛时间

    PenH:增强呼气间歇(enhanced pause)

    Rpef:相对时间

     

    适用领域 

    · 各种呼吸疾病研究,如:哮喘、肺纤维化、肺损伤、ARDS、肺癌等

    · 安全药理:药物对呼吸系统的影响

    · 睡眠呼吸:监测动物低通气、阻塞性呼吸暂停等

    · 环境毒理:环境污染物对动物呼吸的影响

    · 吸入式毒理:染毒物质对呼吸系统的毒性影响

    · 高原医学:高原环境对呼吸系统的影响

    · 其它需要对呼吸参数评价的场合

    ScreenShot_2026-01-12_161512_114.jpgScreenShot_2026-01-12_161531_746.jpg

     

     

     

     

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献

    [1] Zhou J W, Bai Y, Guo J Q, et al. Peroxiredoxin 4 as a switch regulating PTEN/AKT axis in alveolar macrophages activation[J]. Signal Transduction and Targeted Therapy (IF 52.7), 2025, 10(1): 352.

    [2] Jiang C, Huang H, Yang X, et al. Targeting mitochondrial dynamics of morphin-responsive dopaminergic neurons ameliorates opiate withdrawal[J]. The Journal of Clinical Investigation (IF 19.5), 2024.

    [3] Wang Z, Miao Z, Cao Z, et al. Mild Hyperthermia‐Assisted Coaxial Electrospun Nanofiber Patches for Epicutaneous Allergen‐Specific Immunotherapy[J]. Advanced Functional Materials (IF 19.0), 2025: e09955.

    [4] Dong S, Fang H, Zhu J, et al. Inhalable siRNA Targeting IL-11 Nanoparticles Significantly Inhibit Bleomycin-Induced Pulmonary Fibrosis[J]. ACS nano (IF 15.8), 2025.

    [5] Chen J, Wang J, Zheng W, et al. Brain–cervical lymph node crosstalk contributes to brain injury induced by subarachnoid hemorrhage in mice[J]. Nature Communications (IF 15.7), 2025, 16(1): 8551.

    [6] Wang Y, Zhao Q, Zhang Q, et al. Targeted Delivery of CNS‐Specific Hesperidin as a Leptin Sensitizer for Treating Obesity‐Associated Sleep‐Disordered Breathing[J]. Advanced Science (14.1), 2025, 12(45): e06182.

    [7] Wang Z, Lu X, Wu L, et al. Co-delivery of targeted hypoallergens and resiquimod powders using silk fibroin microneedles for effective allergen-specific immunotherapy[J]. Theranostics (IF 13.3), 2025, 15(16): 8096.

    [8] Liu Y, Li G, Xiong A, et al. Fine particulate matter exacerbates asthma by activating STC2-mediated mitophagy through METTL3/YTHDF2-dependent m6A methylation[J]. Journal of Hazardous Materials (IF12.2), 2025: 138854.

    [9] Li H, Liu S, Dai W, et al. Pressure-sensitive multivesicular liposomes as a smart drug-delivery system for high-altitude pulmonary edema[J]. Journal of Controlled Release (IF 11.5), 2024, 365: 301-316.

    [10] Hou T, Zhu L, Zhang Y, et al. Lipid peroxidation triggered by the degradation of xCT contributes to gasdermin D-mediated pyroptosis in COPD[J]. Redox Biology (IF 10.1), 2024, 77: 103388.

    [11] Luo L, Qin Z, Chen M, et al. γ-Aminobutyric acid–mediated parafacial zone: Integrating consciousness and respiratory control in sevoflurane anesthesia[J]. Anesthesiology (IF 9.1), 2025, 144(1): 116.

    [12] Duan L L, Cai P, Li Z S, et al. Role of the supramammillary nucleus–medial septum glutamatergic pathway in mediating the effects of isoflurane anesthesia[J]. Anesthesiology (IF 9.1), 2025, 143(4): 944.

    [13] Wei X, Cao X, Xu C, et al. Revolutionizing antibiotic therapy: polymyxin B and Fe2+-enriched liposomal carrier harness novel bacterial ferroptosis mechanism to combat resistant infections[J]. Journal of Pharmaceutical Analysis, 2025: 101293.

    [14] Zhou W, Zhou Y, Zhang S, et al. Gut microbiota’s role in high-altitude cognitive impairment: The therapeutic potential of Clostridium sp. supplementation[J]. Science China Life Sciences, 2025, 68(4): 1132-1148.

    [15] Liu J, Gao J, Xiong A, et al. Exploring Cistanche's therapeutic potential and molecular mechanisms in asthma treatment[J]. Phytomedicine, 2025, 136: 156265.

    [16] Wang X, Zhao H, Lin W, et al. Panax notoginseng saponins ameliorate LPS-induced acute lung injury by promoting STAT6-mediated M2-like macrophage polarization[J]. Phytomedicine, 2025, 139: 156513.

    [17] Jiang J, Ai S, Yuan C, et al. Dysfunction of cholinergic neuron in nucleus ambiguous aggravates sepsis-induced lung injury via a GluA1-dependment mechanism[J]. Brain, Behavior, and Immunity, 2025.

    [18] Xu Z, Wu Y, Zhao X, et al. Integrating nontargeted metabolomics and RNA sequencing of dexamethasone-treated and untreated asthmatic mice reveals changes of amino acids and aminoacyl-tRNA in group 2 innate lymphoid cells[J]. International Journal of Biological Macromolecules, 2024, 283: 137630.

    [19] Su J, Tu Y, Hu X, et al. Ambient PM2. 5 orchestrates M1 polarization of alveolar macrophages via activating glutaminase 1-mediated glutaminolysis in acute lung injury[J]. Environmental Pollution, 2025, 366: 125467.

    [20] Shan C, Li W, Sun Y, et al. Benzo (a) pyrene exposure aggravates airway remodeling in asthma by activating AhR-GDF15 pathway in epithelial cells[J]. Environmental Pollution, 2025: 127557.

    [21] Zhang M, Xu B, Li N, et al. All-Hydrocarbon Stapled Peptide Multifunctional Agonists at Opioid and Neuropeptide FF Receptors: Highly Potent, Long-Lasting Brain Permeant Analgesics with Diminished Side Effects[J]. Journal of Medicinal Chemistry, 2023.

    [22] Long Y, Ang Y, Chen W, et al. Hydrogen alleviates impaired lung epithelial barrier in acute respiratory distress syndrome via inhibiting Drp1-mediated mitochondrial fission through the Trx1 pathway[J]. Free Radical Biology and Medicine, 2024, 218: 132-148.

    [23] Wang Y, Liu X, Zhang Q, et al. Bioluminescence-optogenetics-mediated gene therapy in a sleep-disordered breathing mouse model[J]. Biomedicine & Pharmacotherapy, 2024, 178: 117159.

    [24] Tabynov K, Tailakova E, Rakhmatullayeva G, et al. Comparison of rArt v 1-based sublingual and subcutaneous immunotherapy in a murine model of asthma[J]. npj Vaccines, 2025, 10(1): 66.

    [25] Jiang Y, Zhang Y, Wang X, et al. Phosphatase PHLPP1 is an alveolar-macrophage-intrinsic transcriptional checkpoint controlling pulmonary fibrosis[J]. Cell Reports, 2025, 44(3).

    [26] Liu S, Chu J, Yin X, et al. The adeno associated viral vectored Dp12S vaccine effective alleviation of asthma symptoms in mice[J]. npj Vaccines, 2025.

    [27] Jin M, Liu J, Shao M, et al. Chitosan Nanoparticles for Pulmonary Delivery of Curcumin/Nintedanib to Treat Pulmonary Fibrosis[J]. International Journal of Nanomedicine, 2025: 12959-12973.

    [28] Xiong A, He X, Liu S, et al. Oxidative stress-mediated activation of FTO exacerbates impairment of the epithelial barrier by up-regulating IKBKB via N6-methyladenosine-dependent mRNA stability in asthmatic mice exposed to PM2. 5[J]. Ecotoxicology and Environmental Safety, 2024, 272: 116067.

    [29] Jia X, Liu S, Sun C, et al. METTL16 controls airway inflammations in smoking-induced COPD via regulating glutamine metabolism[J]. Ecotoxicology and Environmental Safety, 2025, 289: 117518.

    [30] Lu X, Tan Z X, Yao Y X, et al. Inhaling arsenic aggravates airway hyperreactivity by upregulating PNEC-sourced 5-HT in OVA-induced allergic asthma[J]. Ecotoxicology and Environmental Safety, 2025, 290: 117764.

    [31] Li Q, Ang Y, Zhou Q, et al. Coral calcium hydride promotes peripheral mitochondrial division and reduces AT-II cells damage in ARDS via activation of the Trx2/Myo19/Drp1 pathway[J]. Journal of Pharmaceutical Analysis, 2024: 101039.

    [32] Zhang X, Hu T, Yu X, et al. Human umbilical cord mesenchymal stem cells improve lung function in chronic obstructive pulmonary disease rat model through regulating lung microbiota[J]. Stem Cells, 2024: sxae007.

    [33] Akhtemova N, Sergazina A, Bolatbekov T, et al. The role of major allergens Art v 1 and Art v 3 in Artemisia pollen-induced asthma: a mouse model study[J]. Frontiers in Immunology, 2025, 16: 1590791.

    [34] Tabynov K, Nedushenko I, Tailakova E, et al. Intranasal monoclonal antibodies to mugwort pollen reduce allergic inflammation in a mouse model of allergic rhinitis and asthma[J]. Frontiers in Immunology, 2025, 16: 1595659.

    [35] Zhang Y, Jiang M, Xiong Y, et al. Integrated analysis of ATAC-seq and RNA-seq unveils the role of ferroptosis in PM2. 5-induced asthma exacerbation[J]. International Immunopharmacology, 2023, 125: 111209.

    [36] Yao W, Huang S X, Zhang L, et al. Central amygdala somatostatin neurons modulate stress-induced sleep-onset insomnia[J]. Communications Biology, 2025, 8(1): 381.

    [37] Lin Y, Wu Y, Ma F, et al. Exploration of the mechanism of Qi-Xian decoction in asthmatic mice using metabolomics combined with network pharmacology[J]. Frontiers in Molecular Biosciences, 2023, 10.

    [38] Yang D, Li Y, Liu T, et al. IL‐1β promotes IL‐17A production of ILC3s to aggravate neutrophilic airway inflammation in mice[J]. Immunology, 2025, 176(1): 16-32.

    [39] Zhang Y, Yang Y, Liang H, et al. Nobiletin, as a Novel PDE4B Inhibitor, Alleviates Asthma Symptoms by Activating the cAMP-PKA-CREB Signaling Pathway[J]. International Journal of Molecular Sciences, 2024, 25(19): 10406.

    [40] Tsentsevitsky A N, Sibgatullina G V, Odoshivkina Y G, et al. Functional and Structural Changes in Diaphragm Neuromuscular Junctions in Early Aging[J]. International Journal of Molecular Sciences, 2024, 25(16): 8959.

    [41] Ma J, Ni Z, Chen Q, et al. Exploring the kidney-tonifying effect of Qi-Xian decoction for asthma treatment by modulating the proliferation and migration of endogenous BMSCs[J]. Chinese Journal of Natural Medicines, 2025, 23(12): 100009.

    [42] Liu K, Gu Y, Gu S, et al. Trim27 aggravates airway inflammation and oxidative stress in asthmatic mice via potentiating the NLRP3 inflammasome[J]. International Immunopharmacology, 2024, 134: 112199.

    [43] Yuan Z, Wang Q, Tan Y, et al. Methylprednisolone alleviates lung injury in sepsis by regulating miR-151-5p/USP38 pathway[J]. International Immunopharmacology, 2024, 138: 112548.

    [44] Wang Y, Peng M, Yang X, et al. Total alkaloids in Fritillaria cirrhosa D. Don alleviate OVA-induced allergic asthma by inhibiting M2 macrophage polarization[J]. Journal of Ethnopharmacology, 2025, 337: 118935.

    [45] He J, Li J, Lin Q, et al. Anti-CD20 treatment attenuates Th2 cell responses: implications for the role of lung follicular mature B cells in the asthmatic mice[J]. Inflammation Research, 2024, 73(3): 433-446

    [46] Liu Y, Tang A, Liu M, et al. Tuberostemonine may enhance the function of the SLC7A11/glutamate antiporter to restrain the ferroptosis to alleviate pulmonary fibrosis[J]. Journal of Ethnopharmacology, 2024, 318: 116983.

    [47] Chen N, Xie Q M, Song S M, et al. Dexamethasone protects against asthma via regulating Hif-1α-glycolysis-lactate axis and protein lactylation[J]. International Immunopharmacology, 2024, 131: 111791.

    [48] Li R, Zhang W, Huang B, et al. Dayuan Yin alleviates symptoms of HCoV-229E-induced pneumonia and modulates the Ras/Raf1/MEK/ERK pathway[J]. Natural Products and Bioprospecting, 2024, 14(1): 58.

    [49] Wei M, Song M, Lin L, et al. Mechanism of Keke tablets in treating post-infectious cough following influenza A virus infection based on network pharmacology, molecular docking, molecular dynamics and in vivo experiments[J]. International Immunopharmacology, 2025, 162: 115123.

    [50] Gong X T, Li Z S, Chen Z L, et al. Basal forebrain-ventral tegmental area glutamatergic pathway promotes emergence from isoflurane anesthesia in mice[J]. Journal of Neuroscience, 2025.

    [51] Cheng S, Huang H, Zhang Z, et al. Pulmonary delivery of excipient-free tobramycin DPIs for the treatment of Pseudomonas aeruginosa lung infection with CF[J]. Frontiers in Pharmacology, 2025, 16: 1528905.

    [52] Yan C X, Sun K, Zhu X, et al. Oligomeric proanthocyanidins mitigate acute lung injury by inhibiting NETs and inflammation via the gut-lung axis[J]. Journal of Functional Foods, 2024, 118: 106272.

    [53] Liu Y, Wang X, Wei J, et al. Comprehensive profiling of amino acids and derivatives in biological samples: A robust UHPLC-MS/MS method for investigating acute lung injury[J]. Journal of Chromatography A, 2024, 1721: 464816.

    [54] Zakyrjanova G F, Tsentsevitsky A N, Matigorova V A, et al. Cholesterol-lowering treatment suppresses neuromuscular transmission via presynaptic mechanism at the mouse diaphragm muscle[J]. Neurochemical Research, 2025, 50(5): 1-23.

    [55] Zhang J, Huang M, Zhou J, et al. Bmi-1 overexpression mitigates vitamin D deficiency-induced pulmonary fibrosis via TIME pathway[J]. Cellular Signalling, 2025: 112180.

    [56] Sun G, Hao W, Li Q, et al. Therapeutic and prophylactic effects of Qipian on COPD in mice: the role of lung and gut microbiota[J]. Microbiology Spectrum, 2025: e01969-24.

    [57] Khaziev A N, Tsentsevitsky A N, Fedorov N S, et al. Exogenous nanomolar zinc ion (Zn2+) as a negative modulator of neuromuscular transmission via presynaptic mechanism in mouse diaphragm[J]. BioMetals, 2025: 1-24.

    [58] Fu X, Wang L T, Xu Q, et al. Necroptosis Inhibition Preserves Diaphragm Function in Experimental Sepsis[J]. The American Journal of Pathology, 2025, 195(12): 2373-2386.

    [59] Zheng R, Yang W, Yan J, et al. DNAH10 mutation cause primary ciliary dyskinesia with defects of IDAf complex assembly and lung fibrosis manifestation[J]. Orphanet Journal of Rare Diseases, 2025, 20(1): 469.

    [60] Chen X Y, Wang L, Ma X, et al. Development of fentany-specific monoclonal antibody (mAb) to antagonize the pharmacological effects of fentany[J]. Toxicology and Applied Pharmacology, 2024, 486: 116918.

    [61] Han C H, Zhang P X, Liu Y, et al. Inhibition of renin-angiotensin system attenuates type I alveolar epithelial cell necroptosis in rats after hyperbaric hyperoxic exposure[J]. Frontiers in Medicine, 2025, 12: 1521729.

    [62] Yin, Lijun; Guan, Zhenbiao; Xu, Jiajun; Yu, Xuhua; Wen, Yukun; Wang, Shifeng; Liu, Wenwu. Assessment of hyperbaric hyperoxic lung injury in rats. Medical Gas Research 15(1):p 129-131, March 2025. | DOI: 10.4103/mgr.MEDGASRES-D-24-00030 

    [63] Yin L, Wen Y, Liang Z, et al. Lung function and blood gas of rats after different protocols of hypobaric exposure[J]. Medical Gas Research, 2025, 15(1): 180-187.

    [64] Aisanjiang M, Dai W, Wu L, et al. Ameliorating lung fibrosis and pulmonary function in diabetic mice: Therapeutic potential of mesenchymal stem cell[J]. Biochemical and Biophysical Research Communications, 2024, 737: 150495.

    [65] Jia X, Sun J, Zhuo Q, et al. Effect of the NLRP3 inflammasome on increased hypoxic ventilation response after CIH exposure in mice[J]. Respiratory Physiology & Neurobiology, 2024, 321: 104204.

    [66] Kuznetsova E A, Fedorov N S, Zakyrjanova G F, et al. 25-Hydroxycholesterol as a negative regulator of diaphragm muscle contractions via estrogen receptor and Ca2+-dependent pathway[J]. Histochemistry and Cell Biology, 2025, 163(1): 1-15.

    [67] Wu Y, Dai T, Qin J, et al. Regulation of Dendritic Cell Function by RFX5 through Interaction with HDAC2 and Its Mechanism in Pediatric Asthma[J]. Biocell, 2025, 49(4).

    [68] Xu X, Nie X, Zhang W, et al. A brainstem circuit controls cough-like airway defensive behaviors in mice[J]. bioRxiv, 2024: 2024.09. 08.611924.

    [69] Li W, Wu L, Lu X, et al. Prenatal Benzo [A] Pyrene Exposure Exacerbates Ova-Induced Asthma in Offspring Mice[J]. Available at SSRN 5265037.

     
    相关实验
    • 人为什么会打喷嚏?刘琴课题组 Cell 发文揭露喷嚏反射神经机制

      by a peptidergic pathway from nose to brainstem 的论文 [1], 揭示了脑干与鼻子之间的肽能通路是如何调节喷嚏反射的。 研究内容: 在人体中,喷嚏的表现形式是标志性的「阿嚏」,以及气体爆发式的喷出。为了研究喷嚏,此前的学者往往使用猫作为实验模型。遗憾的是,这种模型无法成功模拟真正喷嚏产生时的胸腔变化。为了更贴近人类的喷嚏反射,研究团队试图使用雾化辣椒素与组织胺,在小鼠中诱导与人类相似的喷嚏反射。图片来源:Cell 全身体积描记结果显示,在吸入辣椒素或者组织胺后,小鼠的呼吸

    • 吃得少,可以让肌肉更「年轻」?研究证实:热量限制饮食 + 雷帕霉素,有助延缓肌肉衰老

      % CR 喂食小鼠的基础上进行 RM 处理。RM 和 CR 单独诱导的全体代谢变化与上述的观察一致。 但令人非常惊讶的是,RM 进一步减缓了 CR 小鼠的肌肉老化。在 RM 治疗的 CR 小鼠中,两者的有益效应是相加的,小鼠的肌肉功能明显优于单独接受任何一种治疗的小鼠。 这些数据证实,CR 和 RM 处理对全身肌肉功能和代谢、特定肌肉的大小和纤维类型组成以及孤立的肌肉功能特性和分子特征均具有显著且往往是叠加的影响。因此,这些发现支持了一种观点,即通过雷帕霉素长期抑制 mTORC1 可以独立

    • 多吃这种氨基酸,就能延缓衰老?厦大研究找到驱动衰老的关键因素

      -丝氨酸的合成,进而导致衰老进程的加速和认知功能障碍。研究还发现在下丘脑回补 Menin 蛋白或在饮食中添加 D-丝氨酸可以显著改善年老小鼠的衰老表型和认知障碍。   这一研究揭示了以前未知的生理衰老驱动因素,并表明补充简单的氨基酸可能会减轻一些与衰老相关的变化。 图片来源:Plos Biology   主要研究内容   下丘脑中的 Menin 减少会加速全身衰老   研究人员首先检测了幼鼠和老年小鼠脑 7 个区域内 Menin 的变化趋势,发现随着年龄的增长,下丘脑 Menin 的下降最为显著

    图标技术资料

    暂无技术资料 索取技术资料

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    询价
    上海塔望智能科技有限公司
    2026年01月26日询价
    询价
    北京科月华诚科技有限公司
    2026年01月25日询价
    询价
    北京元森凯德生物技术有限公司
    2026年01月27日询价
    询价
    赞德仪器有限公司
    2026年01月27日询价
    $20000
    北京普升达科贸有限公司
    2026年01月27日询价
    文献支持
    8通道小鼠全身体积描记系统
    询价