万千商家帮你免费找货
0 人在求购买到急需产品
- 详细信息
- 文献和实验
- 技术资料
- 库存:
充足
- 保修期:
1年
- 现货状态:
充足
- 供应商:
塔望科技
- 规格:
咨询电话:021-51537683/15221725700
产品描述
在生命科学、基础医学及高原生理等研究领域,精确模拟低氧环境对于探究缺氧对动物机体的影响至关重要。低氧工作站正是为此类严谨动物实验而设计的核心设备。
不同于普通低氧实验箱在操作时必须开箱破坏环境,低氧工作站通过其全密闭结构和内置操作手套,实现了革命性的突破。研究者无需打开主腔室,即可通过气密手套在持续、稳定维持目标低氧水平(如1%-21% O₂可调)的环境下,对箱内动物进行各项操作,包括:
日常照料:安全地进行喂食、饮水更换,确保动物长期实验中的基本生存需求。
实验干预:执行精准的给药、注射、手术或生理参数监测(如体温、心率)。
行为观察:在恒定低氧条件下进行动物行为学实验,减少环境波动干扰。
原位采样:直接在低氧环境中采集血液、组织等样本,很大程度避免样本暴露于常氧环境导致的氧化应激或代谢状态改变,保障后续分析数据的真实性。
设备操作:放置或操作小型实验仪器(如微型跑步机、摄像头)。
核心优势:
1、环境稳定性卓越:操作过程“零中断”低氧环境,氧气浓度波动极小(通常<±0.1%),为慢性、长期低氧暴露实验(数天至数月)提供持续、可靠的低氧条件,消除因频繁开箱导致的浓度回升与恢复延迟问题。
2、操作便利性与连续性:无需等待环境恢复,可随时、频繁地进行实验操作,极大提升实验效率和灵活性。
3、减少动物应激:密闭操作减少了光线、噪音和人员活动对动物的直接干扰,有助于获得更接近自然状态的生理反应数据。
4、保障样本真实性:低氧环境下的原位采样和处理,是研究缺氧相关生物标志物、基因表达和代谢产物的关键保障,避免取样后氧化造成的假象。
5、集成环境控制(可选):高级型号可集成精确的温湿度控制系统及CO₂清除装置,为动物提供更舒适、生理状态更稳定的实验环境。
6、洁净度与安全性:密闭设计结合高效过滤系统(HEPA/ULPA),可有效控制微生物污染;同时为操作者提供物理屏障,隔绝潜在过敏原或实验性有害物质。
应用场景
低氧工作站是进行高原适应机制研究、缺血性疾病模型、低氧相关肿瘤研究、低氧与代谢疾病的研究、低氧与心血管疾病的研究、围生期缺血缺氧性脑损伤以及任何要求在稳定低氧环境下进行活体操作或原位取样的动物实验的理想平台。它克服了传统低氧箱的核心局限,为获得严谨、可重复的高质量科研数据奠定了坚实的基础。
技术参数
1. 为动物低氧实验模型的建立提供稳定的低氧环境
2. 按照设定气体浓度自动配比气体,维持恒定的氧气浓度环境。无需在箱体外混合比例气体,实验氧浓度的准确,节省气源
3. 触摸屏控制,人性化界面,操作简单
4. 监测参数:温度、湿度、氧气浓度、二氧化碳浓度
5. 控制精度:±0.1%
6. 非色散红外(NDIR)二氧化碳传感器,测量范围:0~5000ppm
7. 进口电化学氧气浓度检测器,测量范围:0-25%vol(可选配0.1-99.0%),线性度好,检测准确、使用寿命长。具有温度补偿机制
8. 温度检测:进口高精度温度传感器
9. 氧气浓度变化动态曲线,直观了解氧气浓度变化的过程
10. 内置紫外灭菌灯,可定时灭菌
11. 具有定时功能,实验完成,自动恢复常氧状态,并伴有声音提示
12. 氧气浓度自动校准:通过控制器对传感器快速校准
13. 特有的气体混合及循环机制,保证箱体内气体浓度的均一
14. 高性能电磁阀,性能稳定,超长寿命
15. 前面板可徒手拆卸,便于放置设备
可选配功能
1、温度湿度控制功能,控温范围:室温+3~45℃(可选4~45℃),调节精度0.1℃;湿度40~85%RH
2、远程监控:可通过电脑、手机远程监控实验运行状态,具有可夜视红外摄像头
3、二氧化碳吸附装置
4、二氧化碳浓度控制功能,可设定目标浓度,控制范围:0-20.0%,其他范围可选
型号选择
|
序号 |
名称 |
型号 |
说明 |
单位 |
|
1 |
动物低氧工作站 |
WS-Ox-M |
外尺寸(W×D×H):1010×650×730mm 内尺寸(W×D×H):610×600×540mm 过渡舱尺寸(W×D×H):240×370×260mm 氧气传感器量程:0-25.0% |
台 |
|
2 |
动物高低氧工作站 |
WS-OxHE-M |
外尺寸(W×D×H):1010×650×730mm 内尺寸(W×D×H):610×600×540mm 过渡舱尺寸(W×D×H):240×370×260mm 氧气传感器量程:0.1-99.0% |
台 |
|
3 |
动物低氧工作站 |
WS-Ox-L |
外尺寸(W×D×H):1300×650×730mm 内尺寸(W×D×H):900×600×540mm 过渡舱尺寸(W×D×H):240×370×260mm 氧气传感器量程:0-25.0% |
台 |
|
4 |
动物高低氧工作站 |
WS-OxHE-L |
外尺寸(W×D×H):1300×650×730mm 内尺寸(W×D×H):900×600×540mm 过渡舱尺寸(W×D×H):240×370×260mm 氧气传感器量程:0.1-99.0% |
台 |
风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。
文献和实验[1] Drekolia M K, Mettner J, Wang D, et al. Cystine import and oxidative catabolism fuel vascular growth and repair via nutrient-responsive histone acetylation[J]. Cell Metabolism (IF 30.9), 2025.
[2] Wu L W, Chen M, Jiang C Y, et al. Inactivation of AXL in Cardiac Fibroblasts Alleviates Right Ventricular Remodeling in Pulmonary Hypertension[J]. Advanced Science (IF 14.1), 2025: e08995.
[3] Lei R, Gu M, Li J, et al. Lipoic acid/trometamol assembled hydrogel as injectable bandage for hypoxic wound healing at high altitude[J]. Chemical Engineering Journal (IF 13.4), 2024, 489: 151499.
[4] Li Z, Li H, Qiao W, et al. Multi-omics dissection of high TWAS-active endothelial pathogenesis in pulmonary arterial hypertension: bridging single-cell heterogeneity, machine learning-driven biomarkers, and developmental reprogramming[J]. International Journal of Surgery (IF 10.1), 10.1097.
[5] Pei Y, Huang L, Wang T, et al. Bone marrow mesenchymal stem cells loaded into hydrogel/nanofiber composite scaffolds ameliorate ischemic brain injury[J]. Materials Today Advances (IF 10), 2023, 17: 100349.
[6] Wang Q, Liu J, Li R, et al. Macrophage κ-opioid receptor inhibits hypoxic pulmonary hypertension progression and right heart dysfunction via an SCD1-dependent anti-inflammatory response[J]. Genes & Diseases (IF 9.4), 2025: 101604.
[7] Wang Y, Zhang R, Chen Q, et al. PPARγ Agonist Pioglitazone Prevents Hypoxia-induced Cardiac Dysfunction by Reprogramming Glucose Metabolism[J]. International Journal of Biological Sciences, 2024, 20(11): 4297.
[8] Wang Y, Shen P, Wu Z, et al. Plasma Proteomic Profiling Reveals ITGA2B as a key regulator of heart health in high-altitude settlers[J]. Genomics, Proteomics & Bioinformatics, 2025: qzaf030.
[9] Lan Y, Zhao S, Song Y, et al. Physicochemical properties of selenized quinoa protein hydrolysate and its regulatory effects on neuroinflammation and gut microbiota in hypoxic mice[J]. Journal of Future Foods, 2025.
[10] Pan Z, Yao Y, Liu X, et al. Nr1d1 inhibition mitigates intermittent hypoxia-induced pulmonary hypertension via Dusp1-mediated Erk1/2 deactivation and mitochondrial fission attenuation[J]. Cell Death Discovery, 2024, 10(1): 459.
[11] Zhou Y, Ni Z, Liu J, et al. Gut Microbiota‐Associated Metabolites Affected the Susceptibility to Heart Health Abnormality in Young Migrants at High‐Altitude: Gut Microbiota and Associated Metabolites Impart Heart Health in Plateau[C]//Exploration. 2025: 20240332.
[12] Li C, Zhao Z, Jin J, et al. NLRP3-GSDMD-dependent IL-1β Secretion from Microglia Mediates Learning and Memory Impairment in a Chronic Intermittent Hypoxia-induced Mouse Model[J]. Neuroscience, 2024, 539: 51-65.
[13] Yang W, Li M, Ding J, et al. High-altitude hypoxia exposure inhibits erythrophagocytosis by inducing macrophage ferroptosis in the spleen[J]. Elife, 2024, 12: RP87496.
[14] You Z, Huang Q, Zeng L, et al. Rab26 promotes hypoxia-induced hyperproliferation of PASMCs by modulating the AT1R-STAT3-YAP axis[J]. Cellular and Molecular Life Sciences, 2025, 82(1): 1-16.
[15] Pei C, Shen Z, Wu Y, et al. Eleutheroside B Pretreatment Attenuates Hypobaric Hypoxia‐Induced High‐Altitude Pulmonary Edema by Regulating Autophagic Flux via the AMPK/mTOR Pathway[J]. Phytotherapy Research, 2024, 38(12): 5657-5671.
[16] Duan H, Han Y, Zhang H, et al. Eleutheroside B Ameliorates Cardiomyocytes Necroptosis in High-Altitude-Induced Myocardial Injury via Nrf2/HO-1 Signaling Pathway[J]. Antioxidants, 2025, 14(2): 190.
[17] Song J, Zheng J, Li Z, et al. Sulfur dioxide inhibits mast cell degranulation by sulphenylation of galectin-9 at cysteine 74[J]. Frontiers in Immunology, 2024, 15: 1369326.
[18] Jia N, Shen Z, Zhao S, et al. Eleutheroside E from pre-treatment of Acanthopanax senticosus (Rupr. etMaxim.) Harms ameliorates high-altitude-induced heart injury by regulating NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 pathway[J]. International Immunopharmacology, 2023, 121: 110423.
[19] Huang Q, Han X, Li J, et al. Intranasal Administration of Acetaminophen-Loaded Poly (lactic-co-glycolic acid) Nanoparticles Increases Pain Threshold in Mice Rapidly Entering High Altitudes[J]. Pharmaceutics, 2025, 17(3): 341.
[20] Wu Y, Tang Z, Du S, et al. Oral quercetin nanoparticles in hydrogel microspheres alleviate high-altitude sleep disturbance based on the gut-brain axis[J]. International Journal of Pharmaceutics, 2024, 658: 124225.
[21] Zhou Z, Zhao Q, Huang Y, et al. Berberine ameliorates chronic intermittent hypoxia‐induced cardiac remodelling by preserving mitochondrial function, role of SIRT6 signalling[J]. Journal of Cellular and Molecular Medicine, 2024, 28(12): e18407.
[22] Shang W, Huang Y, Xu Z, et al. The impact of a high-carbohydrate diet on the cognitive behavior of mice in a low-pressure, low-oxygen environment[J]. Food & Function, 2025, 16(3): 1116-1129.
[23] Pei C, Jia N, Wang Y, et al. Notoginsenoside R1 protects against hypobaric hypoxia-induced high-altitude pulmonary edema by inhibiting apoptosis via ERK1/2-P90rsk-BAD ignaling pathway[J]. European Journal of Pharmacology, 2023, 959: 176065.
[24] Xie L, Wu Q, Huang H, et al. Neuroregulation of histamine of circadian rhythm disorder induced by chronic intermittent hypoxia[J]. European Journal of Pharmacology, 2025: 177662.
[25] Ding Y, Liu W, Zhang X, et al. Bicarbonate-Rich Mineral Water Mitigates Hypoxia-Induced Osteoporosis in Mice via Gut Microbiota and Metabolic Pathway Regulation[J]. Nutrients, 2025, 17(6): 998.
[26] Gu N, Shen Y, He Y, et al. Loss of m6A demethylase ALKBH5 alleviates hypoxia-induced pulmonary arterial hypertension via inhibiting Cyp1a1 mRNA decay[J]. Journal of Molecular and Cellular Cardiology, 2024.
[27] Luan X, Zhu D, Hao Y, et al. Qibai Pingfei Capsule ameliorated inflammation in chronic obstructive pulmonary disease (COPD) via HIF-1 α/glycolysis pathway mediated of BMAL1[J]. International Immunopharmacology, 2025, 144: 113636.
[28] Jiang H, Lu C, Wu H, et al. Decreased cold‐inducible RNA‐binding protein (CIRP) binding to GluRl on neuronal membranes mediates memory impairment resulting from prolonged hypobaric hypoxia exposure[J]. CNS Neuroscience & Therapeutics, 2024, 30(9): e70059.
[29] Chang P, Xu M, Zhu J, et al. Pharmacological Inhibition of Mitochondrial Division Attenuates Simulated High‐Altitude Exposure‐Induced Memory Impairment in Mice: [30] Involvement of Inhibition of Microglia‐Mediated Synapse Elimination[J]. CNS Neuroscience & Therapeutics, 2025, 31(6): e70473.
[30] Liu C, Qu D, Li C, et al. miR‐448‐3p/miR‐1264‐3p Participates in Intermittent Hypoxic Response in Hippocampus by Regulating Fam76b/hnRNPA2B1[J]. CNS Neuroscience & Therapeutics, 2025, 31(2): e70239.
[31] Wu L W, Chen M, Jiang D J, et al. TCF7 enhances pulmonary hypertension by boosting stressed natural killer cells and their interaction with pulmonary arterial smooth muscle cells[J]. Respiratory Research, 2025, 26(1): 202.
[32] Xie L, Wu Q, Huang H, et al. Neuroregulation of histamine of circadian rhythm disorder induced by chronic intermittent hypoxia[J]. European Journal of Pharmacology, 2025: 177662.
[33] Cai S, Li Z, Bai J, et al. Optimized oxygen therapy improves sleep deprivation-induced cardiac dysfunction through gut microbiota[J]. Frontiers in Cellular and Infection Microbiology, 2025, 15: 1522431.
[34] Wang X, Xie Y, Niu Y, et al. CX3CL1/CX3CR1 signal mediates M1-type microglia and accelerates high-altitude-induced forgetting[J]. Frontiers in Cellular Neuroscience, 2023, 17: 1189348.
[35] He Y, Wang Y, Duan H, et al. Pharmacological targeting of ferroptosis in hypoxia-induced pulmonary edema: therapeutic potential of ginsenoside Rg3 through activation of the PI3K/AKT pathway[J]. Frontiers in Pharmacology, 2025, 16: 1644436.
[36] Guo Y, Qin J, Sun R, et al. Molecular hydrogen promotes retinal vascular regeneration and attenuates neovascularization and neuroglial dysfunction in oxygen-induced retinopathy mice[J]. Biological Research, 2024, 57.
[37] Liu L, Zhang J, Song S, et al. Paraventricular nucleus neurons: important regulators of respiratory movement in mice with chronic intermittent hypoxia[J]. Annals of Medicine, 2025, 57(1): 2588664.
[38] Ma Q, Ma J, Cui J, et al. Oxygen enrichment protects against intestinal damage and gut microbiota disturbance in rats exposed to acute high-altitude hypoxia[J]. Frontiers in Microbiology, 2023, 14.
[39] Lan J, Lin J, Guo Y, et al. Sequencing and bioinformatics analysis of exosome-derived miRNAs in mouse models of pancreatic injury induced by OSA[J]. Frontiers in Physiology, 2025, 16: 1712442.
[40] Feng X, Li C, Zhang W, et al. Mechanism of retinal angiogenesis induced by HIF-1α and HIF-2α under hyperoxic conditions[J]. Scientific Reports, 2025, 15(1): 36049.
[41] Yao Y, Chen Y, Li Y, et al. TGM2 Enhances Hypobaric Hypoxia-mediated Brain Injury Via Regulating NLRP3/GSDMD Signaling[J]. Neurochemical Research, 2025, 50(6): 1-11.
[42] Yang A, Guo L, Zhang Y, et al. MFN2-mediated mitochondrial fusion facilitates acute hypobaric hypoxia-induced cardiac dysfunction by increasing glucose catabolism and ROS production[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2023: 130413.
[43] Chu H, Jiang W, Zuo N, et al. Astrocyte activation: A key mediator underlying chronic intermittent hypoxia-induced cognitive dysfunction[J]. Sleep Medicine, 2025: 106692.
[44] Xu A, Huang F, Chen E, et al. Hyperbaric oxygen therapy attenuates heatstroke-induced hippocampal injury by inhibiting microglial pyroptosis[J]. International Journal of Hyperthermia, 2024, 41(1): 2382162.
[45] Zhang Z, Zheng X, He Y, et al. Hyperbaric oxygen ameliorates neuroinflammation in heat-stressed BV-2 microglial cells: potential involvement of EAAT2 regulation[J]. International Journal of Hyperthermia, 2025, 42(1): 2583133.
[46] Jinyu F, Huaicun L, Yanfei Z, et al. Nogo-A Protein Mediates Oxidative Stress and Synaptic Damage Induced by High-altitude Hypoxia in the Rat Hippocampus[J]. 2024.
[47] Su L, Ni T, Fan R, et al. An attention to the effect of intravitreal injection on the controls of oxygen-induced retinopathy mouse model[J]. Experimental Eye Research, 2024, 248: 110094.
[48] Xu Y, Xu J, Li J, et al. Interplay of HIF-1α, SMAD2, and VEGF signaling in hypoxic renal environments: impact on macrophage polarization and renoprotection[J]. Renal Failure, 2025, 47(1): 2561784.
[49] Zhang D, Bian W, Gao Z. Impact of Obstructive Sleep Apnea on Endometrial Function in Female Rats: Mechanism Exploration[J]. Nature and Science of Sleep, 2025: 2485-2499.
[50] Zhang N, Wei F, Ning S, et al. PPARγ Agonist Rosiglitazone and Antagonist GW9662: Antihypertensive Effects on Chronic Intermittent Hypoxia-Induced Hypertension in Rats[J]. Journal of Cardiovascular Translational Research, 2024: 1-13.
[51] Zhang Y, Zhang A, Yang J, et al. Hypoxic Mesenchymal Stem Cell Exosome‐Derived SLC25A3 Ameliorates Bronchopulmonary Dysplasia by Modulating Macrophage Polarization and Oxidative Stress[J]. Cell Biochemistry and Function, 2025, 43(12): e70152.
[52] Lan J, Wang Y, Liu C, et al. Genome-wide analysis of m6A-modified circRNAs in the mouse model of myocardial injury induced by obstructive sleep apnea[J]. BMC Pulmonary Medicine, 2025, 25(1): 158.
[53] Zhang L, Liu X, Wei Q, et al. Arginine attenuates chronic mountain sickness in rats via microRNA-144-5p[J]. Mammalian Genome, 2023, 34(1): 76-89.
[54] Wei J, Hu M, Chen X, et al. Hypobaric Hypoxia Aggravates Renal Injury by Inducing the Formation of Neutrophil Extracellular Traps through the NF-κB Signaling Pathway[J]. Current Medical Science, 2023: 1-9.
[55] Zhang L, Li J, Wan Q, et al. Intestinal stem cell-derived extracellular vesicles ameliorate necrotizing enterocolitis injury[J]. Molecular and Cellular Probes, 2025, 79: 101997.
[56] Liao Y, Ke B, Long X, et al. Abnormalities in the SIRT1-SIRT3 axis promote myocardial ischemia-reperfusion injury through ferroptosis caused by silencing the PINK1/Parkin signaling pathway[J]. BMC Cardiovascular Disorders, 2023, 23(1): 582.
[57] Wang M, Wen W, Chen Y, et al. TRPC5 channel participates in myocardial injury in chronic intermittent hypoxia[J]. Clinics, 2024, 79: 100368.
[58] Li J, Ye J. Chronic intermittent hypoxia induces cognitive impairment in Alzheimer’s disease mouse model via postsynaptic mechanisms[J]. Sleep and Breathing, 2024: 1-9.
[59] Binbin L I, Haizhen L I, Houhuang C, et al. Utilizing Hyperbaric Oxygen Therapy to Improve Cognitive Function in Patients With Alzheimer’s Disease by Activating Autophagy-Related Signaling Pathways[J]. Physiological Research, 2025, 74(1): 141.
[60] Han J, Wang L, Wang L, et al. 5-Hydroxytryptamine Limits Pulmonary Arterial Hypertension Progression by Regulating Th17/Treg Balance[J]. Biological and Pharmaceutical Bulletin, 2025, 48(5): 555-562.
[61] Nan L, Kaisi F, Mengzhen Z, et al. miR-375-3p targets YWHAB to attenuate intestine injury in neonatal necrotizing enterocolitis[J]. Pediatric Surgery International, 2024, 40(1): 63.
[62] Liu B, Zheng W, Tang C, et al. Scutellarein-containing novel formula attenuates hypoxia through inhibiting apoptosis[J]. 2025.
1、 请问哪些公司最新的气相色谱仪或者液相色谱仪的软件已经能够同时进行控制、数据处理、数据管理等功能了? 答:现在很多公司生产的液相、气相色谱仪软件已经采用控制、数据处理等都在WINDOWS版本下直接进行,这些和仪器配套的色谱仪软件一般都是只能控制厂家自己的一套色谱仪,而且价格都比较高(一般的报价几千美金);而现在很多工厂、科研院所、政府机关的实验室一般都拥有几台,甚至几十台色谱仪,这样的话如果每台仪器都要购买厂家的色谱软件,会是一笔不小的花费。现在国内有很多通用型的色谱工作站
1、 请问哪些公司最新的气相色谱仪或者液相色谱仪的软件已经能够同时进行控制、数据处理、数据管理等功能了? 答:现在很多公司生产的液相、气相色谱仪软件已经采用控制、数据处理等都在WINDOWS版本下直接进行,这些和仪器配套的色谱仪软件一般都是只能控制厂家自己的一套色谱仪,而且价格都比较高(一般的报价几千美金);而现在很多工厂、科研院所、政府机关的实验室一般都拥有几台,甚至几十台色谱仪,这样的话如果每台仪器都要购买厂家的色谱软件,会是一笔不小的花费。现在国内有很多通用型的色谱工作站,都具有
·采用外源双瓶供气,一瓶为无氧混合气体,一瓶为氮气,使运作成本大为降低。·采用特殊处理的钯催化剂,省去了每次使用后的活化步骤,该催化剂可使用一年以上。·采用电子自动恒温恒湿系统。·转移闸系统可快速移入和移出样品。·采用EZEE SLEEVES裸手操作系统,避免使用刺激手腕的令人不舒服的橡胶袖套,尤其适用于对橡胶敏感的实验人员。·可调节的高密荧光灯和卤素观察灯,由脚动开关控制。·工作容量大,工作室可放置多达180个90mm的培养皿。·极具特色的单皿转运系统,无需使用转移闸装置或者用手经过通道拿取
技术资料暂无技术资料 索取技术资料









