相关产品推荐更多 >
万千商家帮你免费找货
0 人在求购买到急需产品
- 详细信息
- 文献和实验
- 技术资料
- 品系:
详见细胞说明资料
- 细胞类型:
详见细胞说明资料
- 肿瘤类型:
详见细胞说明资料
- 供应商:
上海冠导生物工程有限公司
- 库存:
≥100瓶
- 生长状态:
详见细胞说明资料
- 年限:
详见细胞说明资料
- 运输方式:
常温运输【复苏细胞】或干冰运输【冻存细胞】
- 器官来源:
详见细胞说明资料
- 是否是肿瘤细胞:
详见细胞说明资料
- 细胞形态:
详见细胞说明资料
- 免疫类型:
详见细胞说明资料
- 物种来源:
详见细胞说明资料
- 相关疾病:
详见细胞说明资料
- 组织来源:
详见细胞说明资料
- 英文名:
Y79人视网膜母细胞瘤细胞系
- 规格:
1*10(6)Cellls/瓶
传代比例:1:2-1:4(首次传代建议1:2)
生长特性:悬浮生长
换液周期:每周2-3次
冻存和复苏的原则:慢冻快融》当细胞冷到零度以下,可以产生以下变化:细胞器脱水,细胞中可溶性物质浓度升GAO,并在细胞内形成冰晶。如果缓慢冷冻,可使细胞逐步脱水,细胞内不致产生大的冰晶;相反,结晶就大,大结晶会造成细胞膜、纲胞器的损伤和破裂。复苏过程应快融,目的是防止小冰晶形成大冰晶,即冰晶的重结晶。慢冻程序》1.标准程序:采用细胞冻存器》当温度在-25℃以上时,1~2℃/min;当温度达-25℃以下时,5~10℃/min;当温度达-100℃时,可迅速放入中。2.简易程序:将冷冻管(管口要朝上)放入纱布袋内,纱布袋系以线绳,通过线绳将纱布袋固定于罐罐口,按每分钟温度下降1~2℃的速度,在40min内降至表面过夜,次晨投人中。3.传统程序:冷冻管置于4℃10分钟→-20℃30分钟→-80℃16~18小时(或隔夜)→槽长期储存。细胞冻存方法:1.预先配制冻存》(1)8%DMSO+细胞生长(92%血清)2.取对数生长期细胞,经胰酶消化后,加入适量冻存,用吸管吹打制成细胞悬(1×10(6)~5×10(6)细胞/ml)。3.加入1ml细胞于冻存管中,密封后标记冷冻细胞名称和冷冻日期。长期保存。保存细胞的复苏方法:1.快速解冻》冻存细胞从中取出后,立即放入37℃水浴中,轻轻摇动冷冻管,使其在1分钟内全部融化(不要超过3分钟)。2.解冻后的细胞可直接接种到含完全生长培养的细胞培养瓶中直接进行培养,24小时后再用新鲜完全培养替换旧培养,以去除DMSO。3.如果细胞对冷冻保护剂别敏感解冻后的细胞应先通过离心去除冷冻保护剂,然后再接种到含完全生长培养的培养瓶中。
Y79人视网膜母细胞瘤细胞系
背景信息:1971年1月,该细胞由病人右眼切除的肿瘤进行原代培养建立而成。
┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
293 EBNA Cells;背景说明:详见相关文献介绍;传代方法:1:4-1:10传代;每周2次。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:Calu 3 Cells、SUM159 Cells、B 95-8 Cells
CMT-64 Cells;背景说明:肺腺癌;雌性;C57;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:GP2d Cells、tdott Cells、UMNSAH-DF1 Cells
LADMAC Cells;背景说明:骨髓淋巴细胞;C3H;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:TO175T Cells、MRC 5 Cells、FHCRC subclone 11 Cells
NCIH1770 Cells;背景说明:详见相关文献介绍;传代方法:随细胞的生长而换液;生长特性:悬浮生长;形态特性:详见产品说明;相关产品有:J45.01 Cells、293 F Cells、Kasumi 1 Cells
产品包装:复苏发货:T25培养瓶(一瓶)或冻存发货:1ml冻存管(两支)
来源说明:细胞主要来源ATCC、ECACC、DSMZ、RIKEN等细胞库
Y79人视网膜母细胞瘤细胞系
细胞的冻存:目前,细胞冻存Zui常用的技术是冷冻保存法,主要采用加适量保护剂的缓慢冷冻法冻存细胞。主要操作步骤为:(1)选择处于对数生长期的细胞,在冻存前一天ZuiHAO换。将多个培养瓶中的细胞培养去掉,用0.25%胰蛋白酶消化。适时去掉胰蛋白酶,加入少量新培养。用吸管吸取培养反复吹打瓶壁上的细胞,使其成为均匀分散的细胞悬。悬浮生产细胞则不要消化处理。然后将细胞收集于离心管中离心(1000r/min,10分钟)。(2)去上清,加入含20%小牛血清的完全培养基,于4℃预冷15分钟后,逐滴加入已无菌的DMSO或甘油,用吸管轻轻吹打使细胞均匀,细胞浓度为3×10(6)~1×10(7)/mL之间。(3)将上述细胞分装于安瓿或专用冷冻塑料管中,安瓿装1~1.5mL在火焰喷灯上封口,封口处要完全封闭,圆滑无勾。冷冻管要将盖子盖紧,并标记HAO细胞名称和冻存日期,同时作HAO登记(日期、细胞种类及代次、冻存支数)。(4)将装HAO细胞的安瓿或冻存管装入沙布袋内;置于容器颈口处存放过夜,次日转入中。采用控制降温速度的方法也可采用下列步骤:先将安瓿置入4℃冰箱中2~3小时,再移至冰箱冷冻室内3~4小时,再吊入容器颈气态部分存放2小时,Zui后沉入中。细胞冻存在中可以长期保存,但为妥善起见,冻存半年后,ZuiHAO取出一只安瓿细胞复苏培养,观察生长情况,然后再继续冻存。
HepG2-luc Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SKNO1 Cells、TE 671 Cells、NRK clone 49F Cells
NCI-H2122 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:4传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:淋巴母细胞;相关产品有:R1610 Cells、U-CH1 Cells、HFL1 Cells
U-373-MG Cells;背景说明:胶质瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MC 3T3-E1 Cells、WSU-DLCL-2 Cells、PANC0327 Cells
物种来源:人源、鼠源等其它物种来源
┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
形态特性:淋巴母细胞样
培养细胞的冻存及复苏:细胞低温冻存是培养室常规工作和通用技术。细胞冻存在-196℃中,储存时间几乎是无限的。细胞冻存及复苏的原则是慢冻快融。【冻存细胞】1)选对数增生期细胞(证明无支原体污染),在冻存前1d换;2)按常规方法把培养细胞制备成悬,计数,使细胞密度达5×10/ml左右密度,离心,去上清;3)加入配制HAO的冻存(培养6.8ml,小牛血清2ml,DMSO 1ml,5.6%NaHCO3 0.1ml),按与去上清相同的量一滴一滴加入离心管中,然后用吸管轻轻吹打令细胞重悬。冻存细胞时培养中加入保护剂10%二甲基亚砜(DMSO)或甘油,可使冰点降低,使细胞内水分在冻结前透出细胞外;4)分装于无菌冻存管中,每管加1.5m悬;5)旋HAO冻存管并仔细检查,一定要盖紧,做HAO标记;6)冻存:在殊的仪器或简易的容器中,按-1℃/min的速度,在30~40min时间内,下降到表面,再停30min后,直接投入中。要适当掌握下降冷冻速度,过快能影响细胞内水分透出,太慢则促进冰晶形成。操作时应戴防护眼镜和手套,以免冻伤。【复苏细胞】1)从罐中取出冻存管;2)迅速放入36℃~37℃水浴,不时摇动,使其急速融化,30~60s内完成;3)冻存管用70%酒精擦拭消毒后,打开盖子,用吸管将细胞悬注入离心管中,再滴加10ml培养;4)低速离心(500~1000r/min) 5min,去上清后再用培养洗一次;5)用培养适当稀释后,装入培养瓶37℃培养,次日更换一次培养后,继续培养。以后仍按常规进行培养。冻存细胞数量要充分,密度应达到10/ml,在融后稀释20倍时,仍能保持5×10/ml数量。
H-2085 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:6传代 ;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:BC-PAP Cells、GTL16 Cells、NCTC 3960 Cells
GES-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:HCET Cells、PC-14 Cells、GI-1 Cells
KP 4 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:Saos2 Cells、D341Med Cells、CCD 19Lu Cells
SK-BR-3 Cells;背景说明:这株细胞源自胸水。没有病毒颗粒。亚显微结构特征包括微丝和桥粒,肝糖原颗粒,大溶酶体,成束的细胞质纤丝。SK-BR-3细胞株过表达HER2/c-erb-2基因产物。;传代方法:消化3-5分钟,1:2,3天内可长满;生长特性:贴壁生长;形态特性:上皮样;相关产品有:KMS11 Cells、CAMA-1 Cells、OVCAR 432 Cells
LUDLU1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:OCILY3 Cells、CT-26 WT Cells、K562 Cells
LA-N-6 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:NCIH1781 Cells、HLEC-SRA 01/04 Cells、KLN 205 Cells
Karpas 422 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:WC00059 Cells、NS-1 Cells、TC7 Cells
OAW42 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:EAC Cells、M210B4 Cells、MDA-MB-175-VII Cells
PA-1 Cells;背景说明:详见相关文献介绍;传代方法:1:4-1:10传代;每周2-3次。 ;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:Becker Cells、NUGC-2 Cells、NCIH1819 Cells
SCC15 Cells;背景说明:详见相关文献介绍;传代方法:1:4-1:8传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:H1092 Cells、NCI-H1694 Cells、Colo699 Cells
BNL CL.2 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:TF1 Cells、JURKAT E-6.1 Cells、Colo-206F Cells
Madin Darby Canine Kidney Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:M20 [Human melanoma] Cells、SK-MEL5 Cells、TM-4 Cells
Hs 819.T Cells;背景说明:详见相关文献介绍;传代方法:1:2—1:3传代;每周换液2-3次;生长特性:贴壁生长;形态特性:成纤维;相关产品有:MPVECs Cells、NU-GC-3 Cells、M3 Clone M-3 Cells
STO Cells;背景说明:STO是一株继代生长的胚成纤维细胞系,可用于制备饲养层细胞(feederlayers)和其他研究。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:NCIH1092 Cells、WEHI3B Cells、H-146 Cells
P815 Cells;背景说明:肥大细胞瘤;雄性;DBA/2;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:SKMEL2 Cells、NPA'87 Cells、hFOB 1.19 Cells
Y79人视网膜母细胞瘤细胞系
MLMA Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:NCI-H727 Cells、COLO-16 Cells、SW1417 Cells
NFS 60 Cells;背景说明:详见相关文献介绍;传代方法:1:3传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:CHO Cells、NCI-SNU-761 Cells、Malme3M Cells
Abcam HCT 116 NOD1 KO Cells(拥有STR基因鉴定图谱)
AG07889 Cells(拥有STR基因鉴定图谱)
BayGenomics ES cell line DTM015 Cells(拥有STR基因鉴定图谱)
BayGenomics ES cell line TEA194 Cells(拥有STR基因鉴定图谱)
BLA.3.3B6.3D4 Cells(拥有STR基因鉴定图谱)
CLY Cells(拥有STR基因鉴定图谱)
┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
DA03505 Cells(拥有STR基因鉴定图谱)
FM3Ats C1.T85 Cells(拥有STR基因鉴定图谱)
GM09539 Cells(拥有STR基因鉴定图谱)
MHH-CALL2 Cells;背景说明:急性B淋巴细胞白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:D-283MED Cells、W133 Cells、BE(2)-C Cells
L-cell Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:MC116 Cells、TW-039 Cells、NCI-H1755 Cells
J774A.1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:32D:cl3 Cells、UCLA-SO-14 Cells、U-138-MG Cells
28SC Cells;背景说明:急性单核细胞白血病;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:CCC-ESF-1 Cells、HEC1A Cells、COLO201 Cells
MBMEC Cells;背景说明:脑微血管;内皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:CNLMG-B5537SKIN Cells、alphaTC1 Clone 6 Cells、UPCI:SCC90 Cells
TO 175.T Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:RAW264.7 Cells、HCC70 Cells、SCL2 Cells
MT-3 [Human leukocytes] Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:PAMC82 Cells、Hs 729T Cells、RPMI 8226/S Cells
HS578 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:CAMA-1 Cells、SCCVII/St Cells、MT-3 [Human leukocytes] Cells
H2170 Cells;背景说明:该细胞1989年建系,源自一位患有肺鳞状细胞癌的男性,该患者不吸烟;传代方法:1:3—1:6传代,3—5天换液1次;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:MBdSMC Cells、IM95 Cells、MADB 106 Cells
OCILY3 Cells;背景说明:弥漫大B淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:Madison Cells、mouse Inner Medullary Collecting Duct-3 Cells、HEK AD293 Cells
T2 (174 x CEM.T2) Cells;背景说明:详见相关文献介绍;传代方法:1:3—1:6传代,每周换液2—3次;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:Bowes melanoma cells Cells、NCIH2347 Cells、GP2d Cells
CEMx721.174.T2 Cells;背景说明:详见相关文献介绍;传代方法:1:3—1:6传代,每周换液2—3次;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:Tn5B1-4 Cells、TE-13 Cells、2BS Cells
95C Cells;背景说明:肺巨细胞癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:BT474 Cells、Lu-99A Cells、UO.31 Cells
BayGenomics ES cell line CSA041 Cells(拥有STR基因鉴定图谱)
LS1034 Cells;背景说明:详见相关文献介绍;传代方法:1:3传代,每周2-3次;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:NRK-52E Cells、NCL-H548 Cells、SK-N-F1 Cells
TO 175.T Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:RAW264.7 Cells、HCC70 Cells、SCL2 Cells
OV-90 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代,3-4天换液1次。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:P3JHR-1 Cells、RK-13 Cells、OK-WT Cells
EBC-1/original Cells;背景说明:肺鳞癌;皮肤转移;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Caki-2 Cells、ACC-3 Cells、AN-3 Cells
PC-3/M Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:184A1 Cells、NCM356 Cells、H1155 Cells
Ramos.G6.C10 Cells;背景说明:详见相关文献介绍;传代方法: 维持细胞浓度在2×105/ml-1×106/ml;根据细胞浓度每2-3天补液1次。;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:MC-3T3 Cells、ONS-76 Cells、HUC Cells
Ramos.G6.C10 Cells;背景说明:详见相关文献介绍;传代方法: 维持细胞浓度在2×105/ml-1×106/ml;根据细胞浓度每2-3天补液1次。;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:MC-3T3 Cells、ONS-76 Cells、HUC Cells
HRA 19 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Rat Lung Epithelial-6-T-antigen Negative Cells、NCI-H2444 Cells、L02 Cells
GM16010 Cells(拥有STR基因鉴定图谱)
HAP1 GPR75 (-) 2 Cells(拥有STR基因鉴定图谱)
OCIAML5 Cells;背景说明:急性髓系白血病细胞;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:Leukemia 1210 Cells、HS-294 Cells、HEL-92-1-7 Cells
HOKKAIDO Cells(拥有STR基因鉴定图谱)
JB6 [Human anaplastic large cell lymphoma] Cells(拥有STR基因鉴定图谱)
MCH075 Cells(拥有STR基因鉴定图谱)
ND19802 Cells(拥有STR基因鉴定图谱)
PR00344 Cells(拥有STR基因鉴定图谱)
TRNDi021-D Cells(拥有STR基因鉴定图谱)
UKKi021-B Cells(拥有STR基因鉴定图谱)
HAP1 UCHL3 (-) 1 Cells(拥有STR基因鉴定图谱)
TALL 1 Cells;背景说明:该细胞源于一名复发T-ALL(急性T淋巴细胞性白血病)的儿童的外周血;具有很强的细胞毒性,体内体外实验中都能破坏肿瘤细胞;IL-2可使细胞更好地生长;α/β TCR阳性,γ/δ TCR阴性;可产生IFNγ、TNF-α和GM-CSF。;传代方法:维持细胞密度在4×105-1×106 cells/ml之间,2-3天换液1次 ;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:Michigan Cancer Foundation-12F Cells、SW837 Cells、MPC-5 Cells
PC-2 [Human pancreatic carcinoma] Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SHSY5Y Cells、QBI-293A Cells、NCIH1623 Cells
HT115 Cells;背景说明:结肠癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:OCI-AML-5 Cells、SNU5 Cells、SKMEL3 Cells
RKOAS451 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:T2(174 x CEM.T2) Cells、H-2141 Cells、H-820 Cells
SKM-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:HGMC Cells、GM00637H Cells、L cells Cells
SKM-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:HGMC Cells、GM00637H Cells、L cells Cells
UMUC1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HLE Cells、HFL-1 Cells、H-2029 Cells
HSC-6 Cells;背景说明:口腔鳞癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:PC3M-2B4 Cells、OVCAR.8 Cells、Ca Ski Cells
OVCA 433 Cells;背景说明:卵巢癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Japanese Tissue Culture-28 Cells、HPAF-II Cells、H-1944 Cells
Panc 04.03 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:Mono-Mac-1 Cells、T2(174 x CEM.T2) Cells、L428 Cells
SK-Hep1 Cells;背景说明:SK-HEP-1细胞系已被鉴定为内皮来源。该细胞系为异倍体女性人(XX),染色体在亚三倍体范围内。在裸鼠中,它能形成与肝癌相一致的大细胞癌;传代方法:1:3传代,2-3天换液一次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:Hepatoma 22 Cells、YH Cells、Mink Lung Cells
SK-CO-1 Cells;背景说明:该细胞来源于结直肠病人的转移性腹水。;传代方法:1:2-1:3传代,每周2-3次。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:H-1734 Cells、NCI-H1437 Cells、CV 1 Cells
KTC-1 Cells;背景说明:甲状腺乳头状癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:RPMI 8226 Cells、UMC11 Cells、A 375 Cells
OSC19 Cells;背景说明:舌鳞癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:BL-6 Cells、SEG-1 Cells、SU86_86 Cells
KMB-17 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:TE354T Cells、IOSE-80 Cells、Med 283 Cells
SK-MEL-29.4 Cells(拥有STR基因鉴定图谱)
NCI-H1993 Cells;背景说明:详见相关文献介绍;传代方法:1:2—1:6传代;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:PTK 1 Cells、HuH-6 Cells、P3/NS1/Ag4-1 Cells
F-36P Cells;背景说明:详见相关文献介绍;传代方法:每周2次换液;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Hepa 1-6 Cells、NB9 Cells、PLMVEC Cells
M1 Cells;背景说明:髓系白血病;SL;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:VM-CUB-1 Cells、COLO-320 Cells、MDA-MB-435S Cells
RSC 96 Cells;背景说明:雪旺细胞;自发永生;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Ej138 Cells、SKMEL-31 Cells、IEC 18 Cells
Hce8693 Cells;背景说明:盲肠腺癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:UPCI-SCC-154 Cells、ME-1 [Human leukemia] Cells、CMT-167 Cells
RCC10 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:LAPC4 Cells、H2108 Cells、P116 Cells
┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
A9 Cells;背景说明:皮下结缔组织;自发永生;雄性;C3H/An;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NCIH1688 Cells、H-1573 Cells、A-10 Cells
H-920 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:JVM3 Cells、SNU475 Cells、NCIH2052 Cells
HN6 Cells;背景说明:舌鳞癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HPB-ALL Cells、NOZ Cells、MOPC Cells
OK Cells;背景说明:肾;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Y3-Ag123 Cells、RERF-LCMS Cells、OCIAML3 Cells
Jurkat-FHCRC Cells;背景说明:该细胞源自一位14岁患有T淋巴细胞白血病男性的外周血;传代方法:保持细胞密度在3—9×105cells/ml之间,1:5—1:10传代,每周换液2—3次;生长特性:悬浮生长;形态特性:圆形,单个或呈片;相关产品有:SNK-1 Cells、SKMEL-24 Cells、NCCIT Cells
IGROV 1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HDF-a Cells、K1735 Cells、GDM1 Cells
HCCLM6 Cells;背景说明:肝癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:BNL.1ME A.7R.1 Cells、Panc-3_27 Cells、Verda reno Cells
Y79人视网膜母细胞瘤细胞系
IGROV Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:BIU-87 Cells、KU-812 Cells、Panc 3.27 Cells
BayGenomics ES cell line CSH118 Cells(拥有STR基因鉴定图谱)
BayGenomics ES cell line RRU469 Cells(拥有STR基因鉴定图谱)
BC3A Cells(拥有STR基因鉴定图谱)
Ki-6 Cells(拥有STR基因鉴定图谱)
PCRP-ZNF397-6B9 Cells(拥有STR基因鉴定图谱)
NimoAb101 Cells(拥有STR基因鉴定图谱)
" "PubMed=4894370; DOI=10.1002/1097-0142(196908)24:2<211::AID-CNCR2820240202>3.0.CO;2-3
Southam C.M., Burchenal J.H., Clarkson B.D. Sr., Tanzi A., Mackey R., McComb V.
Heterotransplantability of human cell lines derived from leukemia and lymphomas into immunologically tolerant rats.
Cancer 24:211-222(1969)
DOI=10.1007/BF02618370
Stulberg C.S., Coriell L.L., Kniazeff A.J., Shannon J.E.
The animal cell culture collection.
In Vitro 5:1-16(1970)
PubMed=4321017; DOI=10.1002/ijc.2910060315
Durr F.E., Monroe J.H., Schmitter R., Traul K.A., Hirshaut Y.
Studies on the infectivity and cytopathology of Epstein-Barr virus in human lymphoblastoid cells.
Int. J. Cancer 6:436-449(1970)
PubMed=4321974
Maurer B.A., Imamura T., Wilbert S.M.
Incidence of EB virus-containing cells in primary and secondary clones of several Burkitt lymphoma cell lines.
Cancer Res. 30:2870-2875(1970)
PubMed=4325933; DOI=10.1093/jnci/46.6.1243
Pearson G.R., Henle G.S., Henle W.
Production of antigens associated with Epstein-Barr virus in experimentally infected lymphoblastoid cell lines.
J. Natl. Cancer Inst. 46:1243-1250(1971)
PubMed=4122458; DOI=10.1002/ijc.2910100108
Klein G., Dombos L., Gothoskar B.
Sensitivity of Epstein-Barr virus (EBV) producer and non-producer human lymphoblastoid cell lines to superinfection with EB-virus.
Int. J. Cancer 10:44-57(1972)
PubMed=4347031; DOI=10.1093/jnci/48.1.87
Hewetson J.F., Gothoskar B., Klein G.
Radioiodine-labeled antibody test for the detection of membrane antigens associated with Epstein-Barr virus.
J. Natl. Cancer Inst. 48:87-94(1972)
PubMed=4550511; DOI=10.1073/pnas.69.1.78; PMCID=PMC427548
Hampar B., Derge J.G., Martos L.M., Walker J.L.
Synthesis of Epstein-Barr virus after activation of the viral genome in a 'virus-negative' human lymphoblastoid cell (Raji) made resistant to 5-bromodeoxyuridine.
Proc. Natl. Acad. Sci. U.S.A. 69:78-82(1972)
PubMed=4364259; DOI=10.1002/ijc.2910110210
Klein G., Dombos L.
Relationship between the sensitivity of EBV-carrying lymphoblastoid lines to superinfection and the inducibility of the resident viral genome.
Int. J. Cancer 11:327-337(1973)
PubMed=4736620; DOI=10.1111/j.1469-1809.1973.tb00588.x
Povey S., Gardiner S.E., Watson B., Mowbray S., Harris H., Arthur E., Steel C.M., Blenkinsop C., Evans H.J.
Genetic studies on human lymphoblastoid lines: isozyme analysis on cell lines from forty-one different individuals and on mutants produced following exposure to a chemical mutagen.
Ann. Hum. Genet. 36:247-266(1973)
PubMed=4366935
Minowada J., Nonoyama M., Moore G.E., Rauch A.M., Pagano J.S.
The presence of the Epstein-Barr viral genome in human lymphoblastoid B-cell lines and its absence in a myeloma cell line.
Cancer Res. 34:1898-1903(1974)
PubMed=168255; DOI=10.4049/jimmunol.115.1.243
Hutt L.M., Huang Y.-T., Dascomb H.E., Pagano J.S.
Enhanced destruction of lymphoid cell lines by peripheral blood leukocytes taken from patients with acute infectious mononucleosis.
J. Immunol. 115:243-248(1975)
PubMed=170370; DOI=10.1099/0022-1317-28-2-207
Adams A., Strander H., Cantell K.
Sensitivity of the Epstein-Barr virus transformed human lymphoid cell lines to interferon.
J. Gen. Virol. 28:207-217(1975)
PubMed=1086134
Kaplan J., Peterson W.D. Jr.
Detection of T-cell lymphoma-associated antigens on cord blood lymphocytes and phytohemagglutinin-stimulated blasts.
Cancer Res. 36:3471-3475(1976)
PubMed=216485
Higgins N.P., Strauss B.S.
Differences in the ability of human lymphoblastoid lines to exclude bromodeoxyuridine and in their sensitivity to methyl methanesulfonate and to incorporated [3H]thymidine.
Cancer Res. 39:312-320(1979)
PubMed=7316467; DOI=10.1111/j.1469-1809.1980.tb00953.x
Povey S., Jeremiah S., Arthur E., Steel M., Klein G.
Differences in genetic stability between human cell lines from patients with and without lymphoreticular malignancy.
Ann. Hum. Genet. 44:119-133(1980)
PubMed=6265077
Pizzo P.A., Chattopadhyay S.K., Magrath I.T., Del Giacco E., Sherrick D., Gray T.E.
Examination of Epstein-Barr virus and C-type proviral sequences in American and African lymphomas and derivative cell lines.
Cancer Res. 41:3165-3171(1981)
PubMed=6286763; DOI=10.4049/jimmunol.129.3.1336
Benjamin D., Magrath I.T., Maguire R.T., Janus C., Todd-Kulikowsk H.D., Parsons R.G.
Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.
J. Immunol. 129:1336-1342(1982)
PubMed=6806672; DOI=10.1038/298474a0
Lenoir G.M., Preud'homme J.-L., Bernheim A., Berger R.
Correlation between immunoglobulin light chain expression and variant translocation in Burkitt's lymphoma.
Nature 298:474-476(1982)
PubMed=6954533; DOI=10.1073/pnas.79.7.2194; PMCID=PMC346157
Westin E.H., Gallo R.C., Arya S.K., Eva A., Souza L.M., Baluda M.A., Aaronson S.A., Wong-Staal F.
Differential expression of the amv gene in human hematopoietic cells.
Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982)
PubMed=7060222; DOI=10.1016/0009-2797(82)90007-2
Meltz M.L., Whittam N.J., Thornburg W.H.
Reassociation of human lymphoblastoid cell DNA repair replicated following methyl methanesulfonate treatment.
Chem. Biol. Interact. 39:77-88(1982)
PubMed=6306472; DOI=10.1038/304135a0
Hamlyn P.H., Rabbitts T.H.
Translocation joins c-myc and immunoglobulin gamma 1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene.
Nature 304:135-139(1983)
PubMed=6419122; DOI=10.1038/306760a0
Rabbitts T.H., Hamlyn P.H., Baer R.
Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma.
Nature 306:760-765(1983)
PubMed=6600440; DOI=10.1007/BF02617996
Uittenbogaart C.H., Cantor Y., Fahey J.L.
Growth of human malignant lymphoid cell lines in serum-free medium.
In Vitro 19:67-72(1983)
PubMed=6231253; DOI=10.1002/ijc.2910330407
Ehlin-Henriksson B., Klein G.
Distinction between Burkitt lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation.
Int. J. Cancer 33:459-463(1984)
PubMed=6500159; DOI=10.1159/000163283
Gershwin M.E., Lentz D., Owens R.B.
Relationship between karyotype of tissue culture lines and tumorigenicity in nude mice.
Exp. Cell Biol. 52:361-370(1984)
PubMed=6547209; DOI=10.1038/309592a0
Rabbitts T.H., Forster A., Hamlyn P.H., Baer R.
Effect of somatic mutation within translocated c-myc genes in Burkitt's lymphoma.
Nature 309:592-597(1984)
PubMed=6582512; DOI=10.1073/pnas.81.2.568; PMCID=PMC344720
Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984)
PubMed=6592381; DOI=10.1093/jnci/73.4.841
Favrot M.-C., Philip I., Philip T., Portoukalian J., Dore J.-F., Lenoir G.M.
Distinct reactivity of Burkitt's lymphoma cell lines with eight monoclonal antibodies correlated with the ethnic origin.
J. Natl. Cancer Inst. 73:841-847(1984)
PubMed=2985879; DOI=10.1016/0145-2126(85)90084-0
Drexler H.G., Gaedicke G., Minowada J.
Isoenzyme studies in human leukemia-lymphoma cell lines -- 1 carboxylic esterase.
Leuk. Res. 9:209-229(1985)
PubMed=2998993
Steel C.M., Morten J.E.N., Foster E.
The cytogenetics of human B lymphoid malignancy: studies in Burkitt's lymphoma and Epstein-Barr virus-transformed lymphoblastoid cell lines.
IARC Sci. Publ. 60:265-292(1985)
PubMed=3159941; DOI=10.1016/0145-2126(85)90134-1
Drexler H.G., Gaedicke G., Minowada J.
Isoenzyme studies in human leukemia-lymphoma cell lines -- III Beta-hexosaminidase (E.C. 3.2.1.30).
Leuk. Res. 9:549-559(1985)
PubMed=3874327; DOI=10.1016/0145-2126(85)90133-x
Drexler H.G., Gaedicke G., Minowada J.
Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.
Leuk. Res. 9:537-548(1985)
PubMed=3905596
Favrot M.-C., Philip I., Philip T., Cabrillat H., Pinatel C., Dore J.-F., Lenoir G.M.
Immunophenotypic classification of 28 Burkitt cell lines with monoclonal antibodies and reagent selection for bone-marrow purging.
IARC Sci. Publ. 60:447-452(1985)
PubMed=3080238
Sieverts H., Alabaster O., Goldschmidts W., Magrath I.T.
Expression of surface antigens during the cell cycle in different growth phases of American and African Burkitt's lymphoma cell lines.
Cancer Res. 46:1182-1188(1986)
PubMed=3100061; DOI=10.1016/0008-8749(86)90099-7
Benjamin D., Bazar L.S., Wallace B., Jacobson R.J.
Heterogeneity of B-cell growth factor receptor reactivity in healthy donors and in patients with chronic lymphatic leukemia: relationship to B-cell-derived lymphokines.
Cell. Immunol. 103:394-408(1986)
PubMed=3518877; DOI=10.3109/07357908609038260
Fogh J.
Human tumor lines for cancer research.
Cancer Invest. 4:157-184(1986)
PubMed=3026973; DOI=10.1002/ijc.2910390215
Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.
Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.
Int. J. Cancer 39:211-218(1987)
PubMed=3034807; DOI=10.1002/ijc.2910390622
Ohno H., Fukuhara S., Takahashi R., Mihara K.-i., Sugiyama T., Doi S., Uchino H., Toyoshima K.
c-yes and bcl-2 genes located on 18q21.3 in a follicular lymphoma cell line carrying a t(14;18) chromosomal translocation.
Int. J. Cancer 39:785-788(1987)
PubMed=2470097; DOI=10.1073/pnas.86.9.3257; PMCID=PMC287109
Shtivelman E., Henglein B., Groitl P., Lipp M., Bishop J.M.
Identification of a human transcription unit affected by the variant chromosomal translocations 2;8 and 8;22 of Burkitt lymphoma.
Proc. Natl. Acad. Sci. U.S.A. 86:3257-3260(1989)
PubMed=2140233; DOI=10.1111/j.1440-1827.1990.tb01549.x
Nakano A., Harada T., Morikawa S., Kato Y.
Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines.
Acta Pathol. Jpn. 40:107-115(1990)
PubMed=1915267; DOI=10.1002/j.1460-2075.1991.tb07837.x; PMCID=PMC452998
Farrell P.J., Allan G.J., Shanahan F., Vousden K.H., Crook T.
p53 is frequently mutated in Burkitt's lymphoma cell lines.
EMBO J. 10:2879-2887(1991)
CLPUB00447
Mulivor R.A., Suchy S.F.
1992/1993 catalog of cell lines. NIGMS human genetic mutant cell repository. 16th edition. October 1992.
(In misc. document) Institute for Medical Research (Camden, N.J.) NIH 92-2011; pp.1-918; National Institutes of Health; Bethesda; USA (1992)
PubMed=1325212; DOI=10.1182/blood.V80.5.1289.1289
Benjamin D., Knobloch T.J., Dayton M.A.
Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10.
Blood 80:1289-1298(1992)
CLPUB00458
Treichel R.S.
Susceptibility to LAK-mediated cytotoxicity of multidrug-resistant variants of the human RAJI cell line is not related to expression of major cellular adhesion molecules.
Ohio J. Sci. 93:14-18(1993)
PubMed=8316623; DOI=10.2307/3578190
Evans H.H., Ricanati M., Horng M.-F., Jiang Q.-Y., Mencl J., Olive P.L.
DNA double-strand break rejoining deficiency in TK6 and other human B-lymphoblast cell lines.
Radiat. Res. 134:307-315(1993)
PubMed=8344493; DOI=10.1096/fasebj.7.10.8344493
Bhatia K.G., Goldschmidts W., Gutierrez M.I., Gaidano G., Dalla-Favera R., Magrath I.T.
Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.
FASEB J. 7:951-956(1993)
PubMed=8515068; DOI=10.4049/jimmunol.150.12.5418
Jain V.K., Judde J.-G., Max E.E., Magrath I.T.
Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.
J. Immunol. 150:5418-5428(1993)
PubMed=8176200; DOI=10.4049/jimmunol.152.10.4749
Benjamin D., Sharma V., Knobloch T.J., Armitage R.J., Dayton M.A., Goodwin R.G.
B cell IL-7. Human B cell lines constitutively secrete IL-7 and express IL-7 receptors.
J. Immunol. 152:4749-4757(1994)
PubMed=7849311; DOI=10.1182/blood.V85.4.893.bloodjournal854893
Stranks G., Height S.E., Mitchell P., Jadayel D.M., Yuille M.A.R., De Lord C.F.M., Clutterbuck R.D., Treleaven J.G., Powles R.L., Nacheva E., Oscier D.G., Karpas A., Lenoir G.M., Smith S.D., Millar J.L., Catovsky D., Dyer M.J.S.
Deletions and rearrangement of CDKN2 in lymphoid malignancy.
Blood 85:893-901(1995)
PubMed=8547074; DOI=10.1111/j.1365-2141.1995.tb05302.x
Siebert R., Willers C.P., Schramm A., Fossa A., Dresen I.M.G., Uppenkamp M.J., Nowrousian M.R., Seeber S., Opalka B.
Homozygous loss of the MTS1/p16 and MTS2/p15 genes in lymphoma and lymphoblastic leukaemia cell lines.
Br. J. Haematol. 91:350-354(1995)
PubMed=8558913
Morita S., Tsuchiya S., Fujie H., Itano M., Ohashi Y., Minegishi M., Imaizumi M., Endo M., Takano N., Konno T.
Cell surface c-kit receptors in human leukemia cell lines and pediatric leukemia: selective preservation of c-kit expression on megakaryoblastic cell lines during adaptation to in vitro culture.
Leukemia 10:102-105(1996)
PubMed=8568269; DOI=10.4049/jimmunol.156.4.1626
Benjamin D., Sharma V., Kubin M., Klein J.L., Sartori A., Holliday J., Trinchieri G.
IL-12 expression in AIDS-related lymphoma B cell lines.
J. Immunol. 156:1626-1637(1996)
PubMed=8847894
Tani A., Tatsumi E., Nakamura F., Kumagai S., Kosaka Y., Sano K., Nakamura H., Amakawa R., Ohno H.
Sensitivity to dexamethasone and absence of bcl-2 protein in Burkitt's lymphoma cell line (Black93) derived from a patient with acute tumor lysis syndrome: comparative study with other BL and non-BL lines.
Leukemia 10:1592-1603(1996)
PubMed=9192833
Cherney B.W., Bhatia K.G., Sgadari C., Gutierrez M.I., Mostowski H.S., Pike S.E., Gupta G., Magrath I.T., Tosato G.
Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.
Cancer Res. 57:2508-2515(1997)
PubMed=9473234; DOI=10.1182/blood.V91.5.1680
Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.
p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.
Blood 91:1680-1687(1998)
PubMed=9510473; DOI=10.1111/j.1349-7006.1998.tb00476.x; PMCID=PMC5921588
Hosoya N., Hangaishi A., Ogawa S., Miyagawa K., Mitani K., Yazaki Y., Hirai H.
Frameshift mutations of the hMSH6 gene in human leukemia cell lines.
Jpn. J. Cancer Res. 89:33-39(1998)
PubMed=9685479; DOI=10.1093/nar/26.16.3651; PMCID=PMC147775
Hultdin M., Gronlund E., Norrback K.-F., Eriksson-Lindstrom E., Just T., Roos G.
Telomere analysis by fluorescence in situ hybridization and flow cytometry.
Nucleic Acids Res. 26:3651-3656(1998)
PubMed=9737686; DOI=10.1038/sj.leu.2401112
Zhang W.-J., Ohnishi K., Shigeno K., Fujisawa S., Naito K., Nakamura S., Takeshita K., Takeshita A., Ohno R.
The induction of apoptosis and cell cycle arrest by arsenic trioxide in lymphoid neoplasms.
Leukemia 12:1383-1391(1998)
PubMed=9738977; DOI=10.1111/j.1349-7006.1998.tb03275.x; PMCID=PMC5921886
Takizawa J., Suzuki R., Kuroda H., Utsunomiya A., Kagami Y., Joh T., Aizawa Y., Ueda R., Seto M.
Expression of the TCL1 gene at 14q32 in B-cell malignancies but not in adult T-cell leukemia.
Jpn. J. Cancer Res. 89:712-718(1998)
PubMed=9787181; DOI=10.1182/blood.V92.9.3410
Sakai A., Thieblemont C., Wellmann A., Jaffe E.S., Raffeld M.
PTEN gene alterations in lymphoid neoplasms.
Blood 92:3410-3415(1998)
PubMed=9973220
Gutierrez M.I., Cherney B.W., Hussain A., Mostowski H.S., Tosato G., Magrath I.T., Bhatia K.G.
Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.
Cancer Res. 59:696-703(1999)
PubMed=10739008; DOI=10.1016/S0145-2126(99)00182-4
Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.
Leuk. Res. 24:255-262(2000)
PubMed=11226526; DOI=10.1016/S0145-2126(00)00121-1
Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
Corrigendum to: Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines Leukemia Research 24 (2000), 255-262.
Leuk. Res. 25:275-278(2001)
PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459
Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
Short tandem repeat profiling provides an international reference standard for human cell lines.
Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)
PubMed=12145705; DOI=10.1038/sj.leu.2402519
Langerak A.W., Moreau E.J., van Gastel-Mol E.J., van der Burg M., van Dongen J.J.M.
Detection of clonal EBV episomes in lymphoproliferations as a diagnostic tool.
Leukemia 16:1572-1573(2002)
PubMed=12967475; DOI=10.1111/j.1349-7006.2003.tb01518.x; PMCID=PMC11160262
Maesako Y., Uchiyama T., Ohno H.
Comparison of gene expression profiles of lymphoma cell lines from transformed follicular lymphoma, Burkitt's lymphoma and de novo diffuse large B-cell lymphoma.
Cancer Sci. 94:774-781(2003)
PubMed=14982850; DOI=10.1016/S0002-9440(10)63184-7; PMCID=PMC1614712
Takakuwa T., Luo W.-J., Ham M.F., Sakane-Ishikawa E., Wada N., Aozasa K.
Integration of Epstein-Barr virus into chromosome 6q15 of Burkitt lymphoma cell line (Raji) induces loss of BACH2 expression.
Am. J. Pathol. 164:967-974(2004)
PubMed=15028022; DOI=10.1111/j.1440-1827.2004.01612.x
Kamimura K., Hojo H., Abe M.
Characterization of expression of protein kinase C isozymes in human B-cell lymphoma: relationship between its expression and prognosis.
Pathol. Int. 54:224-230(2004)
PubMed=15457187; DOI=10.1038/sj.leu.2403534
Karpova M.B., Schoumans J., Ernberg I., Henter J.-I., Nordenskjold M., Fadeel B.
Raji revisited: cytogenetics of the original Burkitt's lymphoma cell line.
Leukemia 19:159-161(2005)
PubMed=15901131; DOI=10.1016/j.prp.2005.01.002
Murai Y., Hayashi S., Takahashi H., Tsuneyama K., Takano Y.
Correlation between DNA alterations and p53 and p16 protein expression in cancer cell lines.
Pathol. Res. Pract. 201:109-115(2005)
PubMed=18357372; DOI=10.3892/or.19.4.889
Pop I., Pop L., Vitetta E.S., Ghetie M.-A.
Generation of multidrug resistant lymphoma cell lines stably expressing P-glycoprotein.
Oncol. Rep. 19:889-895(2008)
PubMed=19358282; DOI=10.1002/ijc.24351
Inagaki A., Ishida T., Yano H., Ishii T., Kusumoto S., Ito A., Ri M., Mori F., Ding J.-M., Komatsu H., Iida S., Ueda R.
Expression of the ULBP ligands for NKG2D by B-NHL cells plays an important role in determining their susceptibility to rituximab-induced ADCC.
Int. J. Cancer 125:212-221(2009)
PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113
Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Signatures of mutation and selection in the cancer genome.
Nature 463:893-898(2010)
PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Cancer Res. 70:2158-2164(2010)
PubMed=20454443; DOI=10.1155/2010/904767; PMCID=PMC2861168
Uphoff C.C., Denkmann S.A., Steube K.G., Drexler H.G.
Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in human and other primate cell lines.
J. Biomed. Biotechnol. 2010:904767.1-904767.23(2010)
PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Nature 483:603-607(2012)
PubMed=22885699; DOI=10.1038/nature11378; PMCID=PMC3609867
Schmitz R., Young R.M., Ceribelli M., Jhavar S., Xiao W.-M., Zhang M.-L., Wright G., Shaffer A.L. 3rd, Hodson D.J., Buras E., Liu X.-L., Powell J.I., Yang Y.-D., Xu W.-H., Zhao H., Kohlhammer H., Rosenwald A., Kluin P.M., Muller-Hermelink H.-K., Ott G., Gascoyne R.D., Connors J.M., Rimsza L.M., Campo E., Jaffe E.S., Delabie J., Smeland E.B., Ogwang M.D., Reynolds S.J., Fisher R.I., Braziel R.M., Tubbs R.R., Cook J.R., Weisenburger D.D., Chan W.-C., Pittaluga S., Wilson W., Waldmann T.A., Rowe M., Mbulaiteye S.M., Rickinson A.B., Staudt L.M.
Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.
Nature 490:116-120(2012)
PubMed=24590883; DOI=10.1002/gcc.22161
Murga Penas E.-M., Schilling G., Behrmann P., Klokow M., Vettorazzi E., Bokemeyer C., Dierlamm J.
Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples.
Genes Chromosomes Cancer 53:497-515(2014)
PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
OncoImmunology 3:e954893.1-e954893.12(2014)
PubMed=25355872; DOI=10.1128/JVI.02570-14; PMCID=PMC4301145
Cao S.-B., Strong M.J., Wang X., Moss W.N., Concha M., Lin Z., O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.
High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.
J. Virol. 89:713-729(2015)
PubMed=25485619; DOI=10.1038/nbt.3080
Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
A comprehensive transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33:306-312(2015)
PubMed=25877200; DOI=10.1038/nature14397
Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
A resource for cell line authentication, annotation and quality control.
Nature 520:307-311(2015)
PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
A landscape of pharmacogenomic interactions in cancer.
Cell 166:740-754(2016)
PubMed=27566572; DOI=10.18632/oncotarget.11524; PMCID=PMC5325377
Quentmeier H., Pommerenke C., Ammerpohl O., Geffers R., Hauer V., MacLeod R.A.F., Nagel S., Romani J., Rosati E., Rosen A., Uphoff C.C., Zaborski M., Drexler H.G.
Subclones in B-lymphoma cell lines: isogenic models for the study of gene regulation.
Oncotarget 7:63456-63465(2016)
PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
Characterization of human cancer cell lines by reverse-phase protein arrays.
Cancer Cell 31:225-239(2017)
PubMed=29892436; DOI=10.1098/rsos.172472; PMCID=PMC5990783
Shioda S., Kasai F., Watanabe K., Kawakami K., Ohtani A., Iemura M., Ozawa M., Arakawa A., Hirayama N., Kawaguchi E., Tano T., Miyata S., Satoh M., Shimizu N., Kohara A.
Screening for 15 pathogenic viruses in human cell lines registered at the JCRB Cell Bank: characterization of in vitro human cells by viral infection.
R. Soc. Open Sci. 5:172472-172472(2018)
PubMed=30285677; DOI=10.1186/s12885-018-4840-5; PMCID=PMC6167786
Tan K.-T., Ding L.-W., Sun Q.-Y., Lao Z.-T., Chien W., Ren X., Xiao J.-F., Loh X.-Y., Xu L., Lill M., Mayakonda A., Lin D.-C., Yang H.H., Koeffler H.P.
Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.
BMC Cancer 18:940.1-940.13(2018)
PubMed=30629668; DOI=10.1371/journal.pone.0210404; PMCID=PMC6328144
Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.
Screening human cell lines for viral infections applying RNA-Seq data analysis.
PLoS ONE 14:E0210404-E0210404(2019)
PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Cancer Res. 79:1263-1273(2019)"
风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。
文献和实验Southam C.M., Burchenal J.H., Clarkson B.D. Sr., Tanzi A., Mackey R., McComb V.
Heterotransplantability of human cell lines derived from leukemia and lymphomas into immunologically tolerant rats.
Cancer 24:211-222(1969)
DOI=10.1007/BF02618370
Stulberg C.S., Coriell L.L., Kniazeff A.J., Shannon J.E.
The animal cell culture collection.
In Vitro 5:1-16(1970)
PubMed=4321017; DOI=10.1002/ijc.2910060315
Durr F.E., Monroe J.H., Schmitter R., Traul K.A., Hirshaut Y.
Studies on the infectivity and cytopathology of Epstein-Barr virus in human lymphoblastoid cells.
Int. J. Cancer 6:436-449(1970)
PubMed=4321974
Maurer B.A., Imamura T., Wilbert S.M.
Incidence of EB virus-containing cells in primary and secondary clones of several Burkitt lymphoma cell lines.
Cancer Res. 30:2870-2875(1970)
PubMed=4325933; DOI=10.1093/jnci/46.6.1243
Pearson G.R., Henle G.S., Henle W.
Production of antigens associated with Epstein-Barr virus in experimentally infected lymphoblastoid cell lines.
J. Natl. Cancer Inst. 46:1243-1250(1971)
PubMed=4122458; DOI=10.1002/ijc.2910100108
Klein G., Dombos L., Gothoskar B.
Sensitivity of Epstein-Barr virus (EBV) producer and non-producer human lymphoblastoid cell lines to superinfection with EB-virus.
Int. J. Cancer 10:44-57(1972)
PubMed=4347031; DOI=10.1093/jnci/48.1.87
Hewetson J.F., Gothoskar B., Klein G.
Radioiodine-labeled antibody test for the detection of membrane antigens associated with Epstein-Barr virus.
J. Natl. Cancer Inst. 48:87-94(1972)
PubMed=4550511; DOI=10.1073/pnas.69.1.78; PMCID=PMC427548
Hampar B., Derge J.G., Martos L.M., Walker J.L.
Synthesis of Epstein-Barr virus after activation of the viral genome in a 'virus-negative' human lymphoblastoid cell (Raji) made resistant to 5-bromodeoxyuridine.
Proc. Natl. Acad. Sci. U.S.A. 69:78-82(1972)
PubMed=4364259; DOI=10.1002/ijc.2910110210
Klein G., Dombos L.
Relationship between the sensitivity of EBV-carrying lymphoblastoid lines to superinfection and the inducibility of the resident viral genome.
Int. J. Cancer 11:327-337(1973)
PubMed=4736620; DOI=10.1111/j.1469-1809.1973.tb00588.x
Povey S., Gardiner S.E., Watson B., Mowbray S., Harris H., Arthur E., Steel C.M., Blenkinsop C., Evans H.J.
Genetic studies on human lymphoblastoid lines: isozyme analysis on cell lines from forty-one different individuals and on mutants produced following exposure to a chemical mutagen.
Ann. Hum. Genet. 36:247-266(1973)
PubMed=4366935
Minowada J., Nonoyama M., Moore G.E., Rauch A.M., Pagano J.S.
The presence of the Epstein-Barr viral genome in human lymphoblastoid B-cell lines and its absence in a myeloma cell line.
Cancer Res. 34:1898-1903(1974)
PubMed=168255; DOI=10.4049/jimmunol.115.1.243
Hutt L.M., Huang Y.-T., Dascomb H.E., Pagano J.S.
Enhanced destruction of lymphoid cell lines by peripheral blood leukocytes taken from patients with acute infectious mononucleosis.
J. Immunol. 115:243-248(1975)
PubMed=170370; DOI=10.1099/0022-1317-28-2-207
Adams A., Strander H., Cantell K.
Sensitivity of the Epstein-Barr virus transformed human lymphoid cell lines to interferon.
J. Gen. Virol. 28:207-217(1975)
PubMed=1086134
Kaplan J., Peterson W.D. Jr.
Detection of T-cell lymphoma-associated antigens on cord blood lymphocytes and phytohemagglutinin-stimulated blasts.
Cancer Res. 36:3471-3475(1976)
PubMed=216485
Higgins N.P., Strauss B.S.
Differences in the ability of human lymphoblastoid lines to exclude bromodeoxyuridine and in their sensitivity to methyl methanesulfonate and to incorporated [3H]thymidine.
Cancer Res. 39:312-320(1979)
PubMed=7316467; DOI=10.1111/j.1469-1809.1980.tb00953.x
Povey S., Jeremiah S., Arthur E., Steel M., Klein G.
Differences in genetic stability between human cell lines from patients with and without lymphoreticular malignancy.
Ann. Hum. Genet. 44:119-133(1980)
PubMed=6265077
Pizzo P.A., Chattopadhyay S.K., Magrath I.T., Del Giacco E., Sherrick D., Gray T.E.
Examination of Epstein-Barr virus and C-type proviral sequences in American and African lymphomas and derivative cell lines.
Cancer Res. 41:3165-3171(1981)
PubMed=6286763; DOI=10.4049/jimmunol.129.3.1336
Benjamin D., Magrath I.T., Maguire R.T., Janus C., Todd-Kulikowsk H.D., Parsons R.G.
Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.
J. Immunol. 129:1336-1342(1982)
PubMed=6806672; DOI=10.1038/298474a0
Lenoir G.M., Preud'homme J.-L., Bernheim A., Berger R.
Correlation between immunoglobulin light chain expression and variant translocation in Burkitt's lymphoma.
Nature 298:474-476(1982)
PubMed=6954533; DOI=10.1073/pnas.79.7.2194; PMCID=PMC346157
Westin E.H., Gallo R.C., Arya S.K., Eva A., Souza L.M., Baluda M.A., Aaronson S.A., Wong-Staal F.
Differential expression of the amv gene in human hematopoietic cells.
Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982)
PubMed=7060222; DOI=10.1016/0009-2797(82)90007-2
Meltz M.L., Whittam N.J., Thornburg W.H.
Reassociation of human lymphoblastoid cell DNA repair replicated following methyl methanesulfonate treatment.
Chem. Biol. Interact. 39:77-88(1982)
PubMed=6306472; DOI=10.1038/304135a0
Hamlyn P.H., Rabbitts T.H.
Translocation joins c-myc and immunoglobulin gamma 1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene.
Nature 304:135-139(1983)
PubMed=6419122; DOI=10.1038/306760a0
Rabbitts T.H., Hamlyn P.H., Baer R.
Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma.
Nature 306:760-765(1983)
PubMed=6600440; DOI=10.1007/BF02617996
Uittenbogaart C.H., Cantor Y., Fahey J.L.
Growth of human malignant lymphoid cell lines in serum-free medium.
In Vitro 19:67-72(1983)
PubMed=6231253; DOI=10.1002/ijc.2910330407
Ehlin-Henriksson B., Klein G.
Distinction between Burkitt lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation.
Int. J. Cancer 33:459-463(1984)
PubMed=6500159; DOI=10.1159/000163283
Gershwin M.E., Lentz D., Owens R.B.
Relationship between karyotype of tissue culture lines and tumorigenicity in nude mice.
Exp. Cell Biol. 52:361-370(1984)
PubMed=6547209; DOI=10.1038/309592a0
Rabbitts T.H., Forster A., Hamlyn P.H., Baer R.
Effect of somatic mutation within translocated c-myc genes in Burkitt's lymphoma.
Nature 309:592-597(1984)
PubMed=6582512; DOI=10.1073/pnas.81.2.568; PMCID=PMC344720
Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984)
PubMed=6592381; DOI=10.1093/jnci/73.4.841
Favrot M.-C., Philip I., Philip T., Portoukalian J., Dore J.-F., Lenoir G.M.
Distinct reactivity of Burkitt's lymphoma cell lines with eight monoclonal antibodies correlated with the ethnic origin.
J. Natl. Cancer Inst. 73:841-847(1984)
PubMed=2985879; DOI=10.1016/0145-2126(85)90084-0
Drexler H.G., Gaedicke G., Minowada J.
Isoenzyme studies in human leukemia-lymphoma cell lines -- 1 carboxylic esterase.
Leuk. Res. 9:209-229(1985)
PubMed=2998993
Steel C.M., Morten J.E.N., Foster E.
The cytogenetics of human B lymphoid malignancy: studies in Burkitt's lymphoma and Epstein-Barr virus-transformed lymphoblastoid cell lines.
IARC Sci. Publ. 60:265-292(1985)
PubMed=3159941; DOI=10.1016/0145-2126(85)90134-1
Drexler H.G., Gaedicke G., Minowada J.
Isoenzyme studies in human leukemia-lymphoma cell lines -- III Beta-hexosaminidase (E.C. 3.2.1.30).
Leuk. Res. 9:549-559(1985)
PubMed=3874327; DOI=10.1016/0145-2126(85)90133-x
Drexler H.G., Gaedicke G., Minowada J.
Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.
Leuk. Res. 9:537-548(1985)
PubMed=3905596
Favrot M.-C., Philip I., Philip T., Cabrillat H., Pinatel C., Dore J.-F., Lenoir G.M.
Immunophenotypic classification of 28 Burkitt cell lines with monoclonal antibodies and reagent selection for bone-marrow purging.
IARC Sci. Publ. 60:447-452(1985)
PubMed=3080238
Sieverts H., Alabaster O., Goldschmidts W., Magrath I.T.
Expression of surface antigens during the cell cycle in different growth phases of American and African Burkitt's lymphoma cell lines.
Cancer Res. 46:1182-1188(1986)
PubMed=3100061; DOI=10.1016/0008-8749(86)90099-7
Benjamin D., Bazar L.S., Wallace B., Jacobson R.J.
Heterogeneity of B-cell growth factor receptor reactivity in healthy donors and in patients with chronic lymphatic leukemia: relationship to B-cell-derived lymphokines.
Cell. Immunol. 103:394-408(1986)
PubMed=3518877; DOI=10.3109/07357908609038260
Fogh J.
Human tumor lines for cancer research.
Cancer Invest. 4:157-184(1986)
PubMed=3026973; DOI=10.1002/ijc.2910390215
Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.
Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.
Int. J. Cancer 39:211-218(1987)
PubMed=3034807; DOI=10.1002/ijc.2910390622
Ohno H., Fukuhara S., Takahashi R., Mihara K.-i., Sugiyama T., Doi S., Uchino H., Toyoshima K.
c-yes and bcl-2 genes located on 18q21.3 in a follicular lymphoma cell line carrying a t(14;18) chromosomal translocation.
Int. J. Cancer 39:785-788(1987)
PubMed=2470097; DOI=10.1073/pnas.86.9.3257; PMCID=PMC287109
Shtivelman E., Henglein B., Groitl P., Lipp M., Bishop J.M.
Identification of a human transcription unit affected by the variant chromosomal translocations 2;8 and 8;22 of Burkitt lymphoma.
Proc. Natl. Acad. Sci. U.S.A. 86:3257-3260(1989)
PubMed=2140233; DOI=10.1111/j.1440-1827.1990.tb01549.x
Nakano A., Harada T., Morikawa S., Kato Y.
Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines.
Acta Pathol. Jpn. 40:107-115(1990)
PubMed=1915267; DOI=10.1002/j.1460-2075.1991.tb07837.x; PMCID=PMC452998
Farrell P.J., Allan G.J., Shanahan F., Vousden K.H., Crook T.
p53 is frequently mutated in Burkitt's lymphoma cell lines.
EMBO J. 10:2879-2887(1991)
CLPUB00447
Mulivor R.A., Suchy S.F.
1992/1993 catalog of cell lines. NIGMS human genetic mutant cell repository. 16th edition. October 1992.
(In misc. document) Institute for Medical Research (Camden, N.J.) NIH 92-2011; pp.1-918; National Institutes of Health; Bethesda; USA (1992)
PubMed=1325212; DOI=10.1182/blood.V80.5.1289.1289
Benjamin D., Knobloch T.J., Dayton M.A.
Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10.
Blood 80:1289-1298(1992)
CLPUB00458
Treichel R.S.
Susceptibility to LAK-mediated cytotoxicity of multidrug-resistant variants of the human RAJI cell line is not related to expression of major cellular adhesion molecules.
Ohio J. Sci. 93:14-18(1993)
PubMed=8316623; DOI=10.2307/3578190
Evans H.H., Ricanati M., Horng M.-F., Jiang Q.-Y., Mencl J., Olive P.L.
DNA double-strand break rejoining deficiency in TK6 and other human B-lymphoblast cell lines.
Radiat. Res. 134:307-315(1993)
PubMed=8344493; DOI=10.1096/fasebj.7.10.8344493
Bhatia K.G., Goldschmidts W., Gutierrez M.I., Gaidano G., Dalla-Favera R., Magrath I.T.
Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.
FASEB J. 7:951-956(1993)
PubMed=8515068; DOI=10.4049/jimmunol.150.12.5418
Jain V.K., Judde J.-G., Max E.E., Magrath I.T.
Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.
J. Immunol. 150:5418-5428(1993)
PubMed=8176200; DOI=10.4049/jimmunol.152.10.4749
Benjamin D., Sharma V., Knobloch T.J., Armitage R.J., Dayton M.A., Goodwin R.G.
B cell IL-7. Human B cell lines constitutively secrete IL-7 and express IL-7 receptors.
J. Immunol. 152:4749-4757(1994)
PubMed=7849311; DOI=10.1182/blood.V85.4.893.bloodjournal854893
Stranks G., Height S.E., Mitchell P., Jadayel D.M., Yuille M.A.R., De Lord C.F.M., Clutterbuck R.D., Treleaven J.G., Powles R.L., Nacheva E., Oscier D.G., Karpas A., Lenoir G.M., Smith S.D., Millar J.L., Catovsky D., Dyer M.J.S.
Deletions and rearrangement of CDKN2 in lymphoid malignancy.
Blood 85:893-901(1995)
PubMed=8547074; DOI=10.1111/j.1365-2141.1995.tb05302.x
Siebert R., Willers C.P., Schramm A., Fossa A., Dresen I.M.G., Uppenkamp M.J., Nowrousian M.R., Seeber S., Opalka B.
Homozygous loss of the MTS1/p16 and MTS2/p15 genes in lymphoma and lymphoblastic leukaemia cell lines.
Br. J. Haematol. 91:350-354(1995)
PubMed=8558913
Morita S., Tsuchiya S., Fujie H., Itano M., Ohashi Y., Minegishi M., Imaizumi M., Endo M., Takano N., Konno T.
Cell surface c-kit receptors in human leukemia cell lines and pediatric leukemia: selective preservation of c-kit expression on megakaryoblastic cell lines during adaptation to in vitro culture.
Leukemia 10:102-105(1996)
PubMed=8568269; DOI=10.4049/jimmunol.156.4.1626
Benjamin D., Sharma V., Kubin M., Klein J.L., Sartori A., Holliday J., Trinchieri G.
IL-12 expression in AIDS-related lymphoma B cell lines.
J. Immunol. 156:1626-1637(1996)
PubMed=8847894
Tani A., Tatsumi E., Nakamura F., Kumagai S., Kosaka Y., Sano K., Nakamura H., Amakawa R., Ohno H.
Sensitivity to dexamethasone and absence of bcl-2 protein in Burkitt's lymphoma cell line (Black93) derived from a patient with acute tumor lysis syndrome: comparative study with other BL and non-BL lines.
Leukemia 10:1592-1603(1996)
PubMed=9192833
Cherney B.W., Bhatia K.G., Sgadari C., Gutierrez M.I., Mostowski H.S., Pike S.E., Gupta G., Magrath I.T., Tosato G.
Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.
Cancer Res. 57:2508-2515(1997)
PubMed=9473234; DOI=10.1182/blood.V91.5.1680
Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.
p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.
Blood 91:1680-1687(1998)
PubMed=9510473; DOI=10.1111/j.1349-7006.1998.tb00476.x; PMCID=PMC5921588
Hosoya N., Hangaishi A., Ogawa S., Miyagawa K., Mitani K., Yazaki Y., Hirai H.
Frameshift mutations of the hMSH6 gene in human leukemia cell lines.
Jpn. J. Cancer Res. 89:33-39(1998)
PubMed=9685479; DOI=10.1093/nar/26.16.3651; PMCID=PMC147775
Hultdin M., Gronlund E., Norrback K.-F., Eriksson-Lindstrom E., Just T., Roos G.
Telomere analysis by fluorescence in situ hybridization and flow cytometry.
Nucleic Acids Res. 26:3651-3656(1998)
PubMed=9737686; DOI=10.1038/sj.leu.2401112
Zhang W.-J., Ohnishi K., Shigeno K., Fujisawa S., Naito K., Nakamura S., Takeshita K., Takeshita A., Ohno R.
The induction of apoptosis and cell cycle arrest by arsenic trioxide in lymphoid neoplasms.
Leukemia 12:1383-1391(1998)
PubMed=9738977; DOI=10.1111/j.1349-7006.1998.tb03275.x; PMCID=PMC5921886
Takizawa J., Suzuki R., Kuroda H., Utsunomiya A., Kagami Y., Joh T., Aizawa Y., Ueda R., Seto M.
Expression of the TCL1 gene at 14q32 in B-cell malignancies but not in adult T-cell leukemia.
Jpn. J. Cancer Res. 89:712-718(1998)
PubMed=9787181; DOI=10.1182/blood.V92.9.3410
Sakai A., Thieblemont C., Wellmann A., Jaffe E.S., Raffeld M.
PTEN gene alterations in lymphoid neoplasms.
Blood 92:3410-3415(1998)
PubMed=9973220
Gutierrez M.I., Cherney B.W., Hussain A., Mostowski H.S., Tosato G., Magrath I.T., Bhatia K.G.
Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.
Cancer Res. 59:696-703(1999)
PubMed=10739008; DOI=10.1016/S0145-2126(99)00182-4
Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.
Leuk. Res. 24:255-262(2000)
PubMed=11226526; DOI=10.1016/S0145-2126(00)00121-1
Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
Corrigendum to: Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines Leukemia Research 24 (2000), 255-262.
Leuk. Res. 25:275-278(2001)
PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459
Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
Short tandem repeat profiling provides an international reference standard for human cell lines.
Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)
PubMed=12145705; DOI=10.1038/sj.leu.2402519
Langerak A.W., Moreau E.J., van Gastel-Mol E.J., van der Burg M., van Dongen J.J.M.
Detection of clonal EBV episomes in lymphoproliferations as a diagnostic tool.
Leukemia 16:1572-1573(2002)
PubMed=12967475; DOI=10.1111/j.1349-7006.2003.tb01518.x; PMCID=PMC11160262
Maesako Y., Uchiyama T., Ohno H.
Comparison of gene expression profiles of lymphoma cell lines from transformed follicular lymphoma, Burkitt's lymphoma and de novo diffuse large B-cell lymphoma.
Cancer Sci. 94:774-781(2003)
PubMed=14982850; DOI=10.1016/S0002-9440(10)63184-7; PMCID=PMC1614712
Takakuwa T., Luo W.-J., Ham M.F., Sakane-Ishikawa E., Wada N., Aozasa K.
Integration of Epstein-Barr virus into chromosome 6q15 of Burkitt lymphoma cell line (Raji) induces loss of BACH2 expression.
Am. J. Pathol. 164:967-974(2004)
PubMed=15028022; DOI=10.1111/j.1440-1827.2004.01612.x
Kamimura K., Hojo H., Abe M.
Characterization of expression of protein kinase C isozymes in human B-cell lymphoma: relationship between its expression and prognosis.
Pathol. Int. 54:224-230(2004)
PubMed=15457187; DOI=10.1038/sj.leu.2403534
Karpova M.B., Schoumans J., Ernberg I., Henter J.-I., Nordenskjold M., Fadeel B.
Raji revisited: cytogenetics of the original Burkitt's lymphoma cell line.
Leukemia 19:159-161(2005)
PubMed=15901131; DOI=10.1016/j.prp.2005.01.002
Murai Y., Hayashi S., Takahashi H., Tsuneyama K., Takano Y.
Correlation between DNA alterations and p53 and p16 protein expression in cancer cell lines.
Pathol. Res. Pract. 201:109-115(2005)
PubMed=18357372; DOI=10.3892/or.19.4.889
Pop I., Pop L., Vitetta E.S., Ghetie M.-A.
Generation of multidrug resistant lymphoma cell lines stably expressing P-glycoprotein.
Oncol. Rep. 19:889-895(2008)
PubMed=19358282; DOI=10.1002/ijc.24351
Inagaki A., Ishida T., Yano H., Ishii T., Kusumoto S., Ito A., Ri M., Mori F., Ding J.-M., Komatsu H., Iida S., Ueda R.
Expression of the ULBP ligands for NKG2D by B-NHL cells plays an important role in determining their susceptibility to rituximab-induced ADCC.
Int. J. Cancer 125:212-221(2009)
PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113
Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Signatures of mutation and selection in the cancer genome.
Nature 463:893-898(2010)
PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Cancer Res. 70:2158-2164(2010)
PubMed=20454443; DOI=10.1155/2010/904767; PMCID=PMC2861168
Uphoff C.C., Denkmann S.A., Steube K.G., Drexler H.G.
Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in human and other primate cell lines.
J. Biomed. Biotechnol. 2010:904767.1-904767.23(2010)
PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Nature 483:603-607(2012)
PubMed=22885699; DOI=10.1038/nature11378; PMCID=PMC3609867
Schmitz R., Young R.M., Ceribelli M., Jhavar S., Xiao W.-M., Zhang M.-L., Wright G., Shaffer A.L. 3rd, Hodson D.J., Buras E., Liu X.-L., Powell J.I., Yang Y.-D., Xu W.-H., Zhao H., Kohlhammer H., Rosenwald A., Kluin P.M., Muller-Hermelink H.-K., Ott G., Gascoyne R.D., Connors J.M., Rimsza L.M., Campo E., Jaffe E.S., Delabie J., Smeland E.B., Ogwang M.D., Reynolds S.J., Fisher R.I., Braziel R.M., Tubbs R.R., Cook J.R., Weisenburger D.D., Chan W.-C., Pittaluga S., Wilson W., Waldmann T.A., Rowe M., Mbulaiteye S.M., Rickinson A.B., Staudt L.M.
Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.
Nature 490:116-120(2012)
PubMed=24590883; DOI=10.1002/gcc.22161
Murga Penas E.-M., Schilling G., Behrmann P., Klokow M., Vettorazzi E., Bokemeyer C., Dierlamm J.
Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples.
Genes Chromosomes Cancer 53:497-515(2014)
PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
OncoImmunology 3:e954893.1-e954893.12(2014)
PubMed=25355872; DOI=10.1128/JVI.02570-14; PMCID=PMC4301145
Cao S.-B., Strong M.J., Wang X., Moss W.N., Concha M., Lin Z., O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.
High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.
J. Virol. 89:713-729(2015)
PubMed=25485619; DOI=10.1038/nbt.3080
Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
A comprehensive transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33:306-312(2015)
PubMed=25877200; DOI=10.1038/nature14397
Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
A resource for cell line authentication, annotation and quality control.
Nature 520:307-311(2015)
PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
A landscape of pharmacogenomic interactions in cancer.
Cell 166:740-754(2016)
PubMed=27566572; DOI=10.18632/oncotarget.11524; PMCID=PMC5325377
Quentmeier H., Pommerenke C., Ammerpohl O., Geffers R., Hauer V., MacLeod R.A.F., Nagel S., Romani J., Rosati E., Rosen A., Uphoff C.C., Zaborski M., Drexler H.G.
Subclones in B-lymphoma cell lines: isogenic models for the study of gene regulation.
Oncotarget 7:63456-63465(2016)
PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
Characterization of human cancer cell lines by reverse-phase protein arrays.
Cancer Cell 31:225-239(2017)
PubMed=29892436; DOI=10.1098/rsos.172472; PMCID=PMC5990783
Shioda S., Kasai F., Watanabe K., Kawakami K., Ohtani A., Iemura M., Ozawa M., Arakawa A., Hirayama N., Kawaguchi E., Tano T., Miyata S., Satoh M., Shimizu N., Kohara A.
Screening for 15 pathogenic viruses in human cell lines registered at the JCRB Cell Bank: characterization of in vitro human cells by viral infection.
R. Soc. Open Sci. 5:172472-172472(2018)
PubMed=30285677; DOI=10.1186/s12885-018-4840-5; PMCID=PMC6167786
Tan K.-T., Ding L.-W., Sun Q.-Y., Lao Z.-T., Chien W., Ren X., Xiao J.-F., Loh X.-Y., Xu L., Lill M., Mayakonda A., Lin D.-C., Yang H.H., Koeffler H.P.
Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.
BMC Cancer 18:940.1-940.13(2018)
PubMed=30629668; DOI=10.1371/journal.pone.0210404; PMCID=PMC6328144
Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.
Screening human cell lines for viral infections applying RNA-Seq data analysis.
PLoS ONE 14:E0210404-E0210404(2019)
PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Cancer Res. 79:1263-1273(2019)"
microRNA-195通过直接影响靶基因Cyclin D1和Cyclin E1的表达 抑制了人神经胶质瘤细胞的增殖
器,它可以调节多种靶基因的表达,引起肿瘤细胞中异常信号的传递,从而影响肿瘤的增殖。先前的研究发现,与人正常的星形胶质细胞和非肿瘤组织相比,miR-195在神经胶质瘤细胞系和人的早期胶质瘤组织中表达显著下调。上调miR-195的表达显著降低了神经胶质瘤细胞的增殖。流式细胞仪分析表明,miR-195的异常表达使S期细胞的百分数明显下降,G1/G0期细胞的百分数增多。过表达miR-195也显著降低了神经胶质瘤细胞的非依赖型锚定生长能力。而且,在神经胶质瘤细胞中,过表达miR-195也降低了磷酸化视网膜母细胞瘤
细胞群都具有相同的染色体畸变和同工酶,就是肿瘤发生的单克隆学说的证据。 两次突变说 一些细胞的恶性转化需要两次或两次以上的突变。第一次突变可能发生在生殖细胞或由父母遗传得来,为合子前突变,也可能发生在体细胞;第二次突变则均发生在体细胞本身,这就是两次突变(击中)说。两次突变说对一些遗传性肿瘤,如视网膜母细胞瘤的发生作出了合理解释。遗传型的视网膜母细胞瘤发病很早,并多双侧性或多发性。这是因为患儿出生时全身所有细胞已有一次基因突变,只需要在出生后某个视网膜母细胞再发后一次突变(第二次突变)。就会转变
+ 视网膜母细胞瘤 10-200× + 小细胞肺癌 50× + L-myc 小细胞肺癌 10-20× ? c-myb 急粒AML 5-10× ? 结肠癌细胞系 10










