Raji人Burkitt's淋巴瘤传代细胞活性强|送STR图谱
文献支持

Raji人Burkitt's淋巴瘤传代细胞活性强|送STR图

收藏
  • ¥850 - 2150
  • 冠导生物
  • Raji人Burkitt's淋巴瘤传代细胞活性强|送STR图谱
  • 美国、德国、欧洲等地
  • 2025年07月14日
    avatar
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 文献和实验
    • 技术资料
    • 品系

      详见细胞说明资料

    • 细胞类型

      详见细胞说明资料

    • 肿瘤类型

      详见细胞说明资料

    • 供应商

      上海冠导生物工程有限公司

    • 库存

      ≥100瓶

    • 生长状态

      详见细胞说明资料

    • 年限

      详见细胞说明资料

    • 运输方式

      常温运输【复苏细胞】或干冰运输【冻存细胞】

    • 器官来源

      详见细胞说明资料

    • 是否是肿瘤细胞

      详见细胞说明资料

    • 细胞形态

      详见细胞说明资料

    • 免疫类型

      详见细胞说明资料

    • 物种来源

      详见细胞说明资料

    • 相关疾病

      详见细胞说明资料

    • 组织来源

      详见细胞说明资料

    • 英文名

      Raji人Burkitt's淋巴瘤传代细胞活性强|送STR图谱

    • 规格

      1*10(6)Cellls/瓶

    "Raji人Burkitt's淋巴瘤传代细胞活性强|送STR图谱
    传代方法:1:2-1:4(首次传代建议1:2)
    生长特性:悬浮生长
    换液频率:每周2-3次
    背景资料:Raji细胞由PulvertaftRJV于1963年从一位11岁黑人男孩的左上颌骨的Burkitt淋巴瘤中分离建立的,是第一个人类造血系统的连续传代细胞,为B细胞起源。该细胞中含有EBV,需要在二级生物安全柜中操作;可作转染宿主。
    SPDC-CCL141 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维母细胞样;相关产品有:CCC-HEH-2 Cells、CHP-126 Cells、LTEP a2 Cells
    Anip-973 Cells;背景说明:肺腺癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:D 407 Cells、HR-8348 Cells、RKOE6 Cells
    CCRF/CEM Cells;背景说明:G.E. Foley 等人建立了类淋巴母细胞细胞株CCRF-CEM。 细胞是1964年11月从一位四岁白人女性急性淋巴细胞白血病患者的外周血白血球衣中得到。此细胞系从香港收集而来。;传代方法:1:2传代。3天内可长满。;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:M-1 Cells、PL 5 Cells、DHBE Cells
    细胞接收操作说明:请仔细阅读本操作说明及相应的细胞说明。本公司细胞发货有四种形式:25培养瓶(一般是贴壁细胞使用,悬浮细胞也可以)、离心管(悬浮细胞使用多,当然,有些公司也会用这种离心管形式发贴壁细胞,但是,长期经验来说,贴壁细胞容易发生形态变化,估计是细胞培养空间狭小,血清不足导致(Zui主要是怕运输延误导致这些情况发生),个人不建议用离心管形式发贴壁细胞)及干冰(冻存细胞用,主要是冬天天气冷,温度低于4℃的地方,都要考虑冻存细胞)。25培养瓶:是用25细胞培养瓶直接发货的形式。收到细胞后,拆开包装25培养瓶的自封袋,不拆封口膜,表面喷75%酒精消毒后显微镜观察细胞状态(有条件可以拍下此时细胞照片)。将细胞放入37度培养箱平衡两小时以上,再处理细胞。首先将25中培养基取出装HAO备用,如细胞密度GAO于80%,可以直接消化传代,相反则加入5-6ml培养基放回培养箱继续培养即可。离心管:是用15ml离心管发货的形式,只用于悬浮细胞发货。收到细胞后消毒处理及将细胞放入37度培养箱平衡两小时以上,再处理细胞。首先将25中培养基取出装HAO备用(如果实验室没有25培养瓶,可以暂时75培养瓶,加入10-15ml培养基,建议10ml培养基,也可以使用175培养瓶,加入50-60ml培养基,培养瓶越大,需要的培养基越多。当然如果刚接收到细胞密度不够的话,ZuiHAO不用大瓶子,先用小瓶子养起来再换大的,不然会长得很慢,严重的,会导致细胞死亡等危险),平衡完成后,离心(1000rpm,3min)收集细胞,弃上清,用新的培养基重悬细胞并接种至培养瓶或皿中,放回培养箱继续培养。干冰:是用本公司冻存冻存细胞后,直接用干冰将冻存的细胞冷冻发货的形式。收到细胞后按照细胞复苏的步骤操作即可。
    Raji人Burkitt's淋巴瘤传代细胞活性强|送STR图谱
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    产品包装形式:复苏细胞:T25培养瓶(一瓶)或冻存细胞:1ml冻存管(两支)
    来源说明:细胞主要来源ATCC、DSMZ等细胞库
    物种来源:Human\Mouse\Rat\Others
    KU-19-19 Cells;背景说明:膀胱癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MM1.S Cells、SK-NEP-1 Cells、HT Cells
    JB6 Cl 30-7b Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:T-ALL-1 Cells、Jurkat-77 Cells、NCI-H2030 Cells
    Renal Proximal Tubule Epithelial Cells/TERT-immortalized 1 Cells;背景说明:肾;近端小管上皮;HGNC-TERT转化;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NCI-H-69 Cells、WI38 Cells、H-292 Cells
    CMT 167 Cells;背景说明:肺腺癌;雌性;C57BL/ICRF-a(t);传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:LLC-PK(1) Cells、VERO76 Cells、RL95-2 Cells
    造成实验室细胞污染常见情况总结:细胞培养中Zui常见污染的是细菌、真菌和支原体污染。细胞一旦污染,大多数较难处理。那么,哪些情况我们不注意的话就会造成细胞污染呢?我们根据常见细胞培养实验分析总结下。【违规操作】1)为节省时间,有人已经用超净台四个多小时,不开紫外灭菌30min,酒精擦拭后直接开始试验;2)器材或者溶很久没用,未检测是否污染而直接使用;离心管多次使用,枪头为了方便交叉使用;3)超净台不点酒精灯;点了酒精灯放在右上角,而你在左下角做试验;4)不带手套,徒手操作;5)细胞培养间配备枪式移器、手术器械、离心机、冰箱等专用仪器设备以及专用的实验服和拖鞋,未定期消毒。专用物品被带出传代细胞使用。培养细胞过程中使用的所有实验用具,如移管、一次性枪头、一次性塑料离心管、冻存管等未按要求灭菌使用(通常需121°CGAO压灭菌20分钟后37%烤干备用)。超净台和桌面,东西太多太乱:超净台不是储物箱,什么培养皿、各种规格的板子、枪头就不要堆在超净台!这样就会有许多紫外线顾不到的卫生死角。传代细胞其他的桌面,切忌东西堆积如山,不要将酒精棉球、标签纸、牛皮纸买来后全部堆在传代细胞!一不小心“飘”进你的细胞培养板里,细胞就会养的不HAO,啥时候死了都不知道!【培养箱太久没清洁】细胞污染了,并非直接扔了培养皿就不管了,首先你还得看看这个恒温培养箱里其他培养皿或孔板里的细胞是否污染,如果有而且HAO几个板子都有类似的污染块,那很可能是培养箱中的水或者空气污染了,得给培养箱做个大扫除,重新酒精消毒,照紫外;孵箱里的水,水没了要记得加,还得记得十天半个月的就用酒精擦擦托盘。【传代细胞人多口杂,难管理】在传代细胞这种卫生要求GAO,人多了,不确定因素多了,难以保证试验在无菌条件下操作。出入试验室,实验服当风衣穿,不扣纽扣,不戴,就容易造成细胞污染;超净台做实验时,喜欢说话聊着做试验,要是还不带口罩,里面就有很多细菌等着去攻击你的细胞呢!
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    Raji人Burkitt's淋巴瘤传代细胞活性强|送STR图谱
    形态特性:淋巴母细胞样
    关于细胞株是否都能一直传代,答案是否定的。细胞系分为有限细胞系与连续细胞系两类。有限细胞系就像一位有着既定行程的行者,其传代之旅存在明确的终点。以正常的人体肝细胞系为例,在体外培养时,它大约能传代20-30次。随着传代次数的递增,细胞内部仿佛一台精密仪器的零件逐渐磨损老化。端粒酶活性降低,端粒不断缩短,染色体结构开始不稳定,基因表达也出现异常。同时,细胞的代谢速率减缓,对营养物质的摄取和利用效率大打折扣,有害物质的积累却日益增多,最终导致细胞停止分裂,走向生命的尽头。而连续细胞系则像是拥有无限活力的长跑健将,具有较强的传代能力。如Hela细胞系,自1951年从Henrietta Lacks女士的宫颈癌组织中分离出来后,便在全球生物实验室中“大放异彩”,至今已传代无数次。它能持续分裂得益于其特殊的遗传变异,使其染色体端粒能够维持稳定长度,并且细胞内的一些关键信号通路持续激活,促进细胞增殖。但这并不意味着它的传代毫无风险与限制。在漫长的传代过程中,它可能会发生新的基因突变、染色体易位等变异事件,从而改变细胞的生物学特性,如细胞形态、生长速度、对药物的敏感性等。
    3T3-L1 ad Cells;背景说明:3T3-L1是从3T3细胞(Swissalbino)中经克隆分离得到的连续传代的亚系。该细胞从快速分裂到汇合和接触性抑制状态经历了前脂肪细胞到脂肪样细胞的转变。该细胞鼠痘病毒阴性;可产生甘油三酯,高浓度血清可增强细胞内脂肪堆积。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:D-283 Med Cells、Hs 819.T Cells、H2009 Cells
    DMS 273 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:AN-3 Cells、OCI-Ly7 Cells、Hs940-T Cells
    HCC9204 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:BEL 7402 Cells、RKO_AS45 Cells、Roswell Park Memorial Institute 7666 Cells
    L 363 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:WEHI 3B Cells、MDCK.2 Cells、LU451 Cells
    OCI-Ly1 Cells;背景说明:弥漫大B淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:THPI Cells、Mahlavu Cells、HCC1500 Cells
    FLS Cells;背景说明:滑膜;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Hs68 Cells、PC10 Cells、SNU484 Cells
    MADB-106 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:MNNG/HOS Clone F-5 Cells、MUTZ-1 Cells、Caov-3 Cells
    293F Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;悬浮生长;形态特性:上皮细胞样;相关产品有:NCIH1876 Cells、T_T_ Cells、MV4;11 Cells
    CMT-93 Cells;背景说明:结肠癌;C57BL/ICRF;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Bac1 2F5 Cells、D341MD Cells、H1105 Cells
    3T3.T4.CXCR4 Cells(拥有STR基因鉴定图谱)
    Abcam Jurkat EPHX1 KO Cells(拥有STR基因鉴定图谱)
    ALC [Mouse ameloblast] Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line RRJ555 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line XK542 Cells(拥有STR基因鉴定图谱)
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    CaBa31 Cells(拥有STR基因鉴定图谱)
    DA00410 Cells(拥有STR基因鉴定图谱)
    DAE100A Cells(拥有STR基因鉴定图谱)
    GM01353 Cells(拥有STR基因鉴定图谱)
    SUM-102 Cells;背景说明:乳腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:H-1651 Cells、NRK 49F Cells、SKN-AS Cells
    HBL1 Cells;背景说明:弥漫大B淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:U2-OS Cells、VSMC Cells、D324 Cells
    SK-ES1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:5传代;每周换液2-3次;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:上皮样;相关产品有:HS-5 Cells、PSN1 Cells、PFSK1 Cells
    H-1436 Cells;背景说明:详见相关文献介绍;传代方法:随细胞的密度而增加;生长特性:悬浮生长;形态特性:详见产品说明;相关产品有:PNT1/A Cells、SUM-52-PE Cells、Hca-F Cells
    OV 2008 Cells;背景说明:宫颈鳞癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:FOXNY Cells、HFF-1 Cells、NCI-H78 Cells
    X63-Ag8-653 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:CemT4 Cells、C-4-I Cells、NCIH1155 Cells
    HO-8910 PM Cells;背景说明:高转移卵巢癌 Cells;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:CL-40 Cells、H-2227 Cells、NCI-H345 Cells
    CL11 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HuH6 Cells、P3-X63.Ag8.653 Cells、HL7702 Cells
    HCC0366 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:MCF/Adr Cells、RN-c Cells、NTC200 Cells
    HOP-62 Cells;背景说明:肺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:LK2 Cells、HUTU80 Cells、T24 Cells
    COLO 678 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:OVCA-432 Cells、NCIH295R Cells、Panc-1-P Cells
    SupB15W Cells;背景说明:详见相关文献介绍;传代方法:1:2传代。3天内可长满。;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:SNU387 Cells、EOMA Cells、COLO-16 Cells
    GMK,BSC-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:TE 85 ClF-5 Cells、HEK-AD293 Cells、HARA-B Cells
    368B1-5 Cells(拥有STR基因鉴定图谱)
    Mevo Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:5传代,2-3天换液1次。;生长特性:混合生长;形态特性:成纤维细胞;相关产品有:Sci-1 Cells、BxPC-3 Cells、MDA2B Cells
    Raji人Burkitt's淋巴瘤传代细胞活性强|送STR图谱
    EAC-E2G8 Cells;背景说明:腹水瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:半贴壁;形态特性:详见产品说明;相关产品有:OVCAR3 Cells、TM-3 Cells、A9 (Hamprecht) Cells
    NIH:OVCAR-4 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HTori:3 Cells、HLE-B3 Cells、ECC-1 Cells
    Swiss 3T3 Cells;背景说明:3T3细胞株是1962年Todaro G和Green H从分离的瑞士小鼠胚胎中建立的;该细胞的生长受接触性抑制,汇合状态的单层细胞密度为40000个细胞/平方厘米;检测结果显示该细胞鼠痘病毒阴性;在中生长较好,在某些玻璃表面上可能状态不佳;细胞生长饱和时其密度可以达到约50000 cells/cm2。;传代方法:1:3传代;3-4天1次。;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:JROECL 19 Cells、624 Cells、HNE2 Cells
    Strain L-929 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:LED-WiDr Cells、H1915 Cells、MT-4 Cells
    KLM1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:EU-4 Cells、ESC-410 Cells、NCIH2110 Cells
    KLM1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:EU-4 Cells、ESC-410 Cells、NCIH2110 Cells
    6-T CEM Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:1.1B4 Cells、TR146 Cells、Walker256 Cells
    GM24374 Cells(拥有STR基因鉴定图谱)
    HAP1 NLRC5 (-) 1 Cells(拥有STR基因鉴定图谱)
    HUASMC Cells;背景说明:脐动脉平滑肌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HC11 Cells、SKLU01 Cells、hTERT-HME1 Cells
    HTori:3 Cells;背景说明:甲状腺;SV40转化;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:KBM-7/Hap8 Cells、H4-II-E Cells、SCC7 Cells
    MESSA Cells;背景说明:详见相关文献介绍;传代方法:1:6-1:8传代;每周2-3次。;生长特性:贴壁生长;形态特性:成纤维细胞样 ;相关产品有:M109 Cells、KYSE-70 Cells、L1210 Cells
    MC3T3-E Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SK-RC-42 Cells、LNCaP Cells、FLC7 Cells
    Hs895T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:Roswell Park Memorial Institute 7951 Cells、SK-N-AS Cells、MOLP2 Cells
    LMH Cells;背景说明:肝癌;雄性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SAOS 2 Cells、Madin-Darby Canine Kidney Cells、NCI-H920 Cells
    SNUC2B Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:PaTu 8988 S Cells、H-727 Cells、C-28/I2 Cells
    118MG Cells;背景说明:注意: 据报道来自不同个体的胶质母细胞瘤细胞株U-118 MG (HTB-15) 和 U-138 MG (HTB-16)有着一致的VNTR和相近的STR模式。 U-118 MG 和 U-138 MG细胞遗传学上很相似并有至少六个衍生标记染色体。 这是1966年至1969年间J. Ponten和同事从恶性神经胶质瘤中构建的细胞株中的一株(其它包括ATCC HTB-14和 ATCC HTB-16 and ATCC HTB-17)。 1987年用BM-Cycline培养6周去除了支原体污染。 ;传代方法: 消化3-5分钟。1:2传代。3天内可长满。;生长特性:贴壁生长;形态特性:混合型;相关产品有:SUP-B1 Cells、Detroit 562 Cells、LM1 Cells
    HRA-19a1.1 Alpha2 F Cells(拥有STR基因鉴定图谱)
    KKU-M139/GEM Cells(拥有STR基因鉴定图谱)
    ML-DmBG6 Cells(拥有STR基因鉴定图谱)
    NRCAN-LL-41 Cells(拥有STR基因鉴定图谱)
    RECC-CU66 Cells(拥有STR基因鉴定图谱)
    UCD-Dm-mei-41-1 Cells(拥有STR基因鉴定图谱)
    ZJUCHi002-A Cells(拥有STR基因鉴定图谱)
    HBL-10 Cells(拥有STR基因鉴定图谱)
    HANK-1 Cells;背景说明:NK/T细胞淋巴瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:HPAF-II/CD18 Cells、Hs274T Cells、NCI-H1618 Cells
    SUP-B15 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代。3天内可长满。;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:NK-92.05 Cells、PC-3M 2B4 Cells、Hs 742.T Cells
    293T Cells;背景说明:293细胞株插入SV40T-抗原的温度敏感基因后产生的高转染效率的衍生株称为293T。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:CMT-64 Cells、HL-60 clone15 Cells、SMA560 Cells
    Hs600T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:SNK1 Cells、Hs832T Cells、U20-S Cells
    HCoEpiC Cells;背景说明:结肠上皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:P36 Cells、C8D1A Cells、HONE-1 Cells
    HCoEpiC Cells;背景说明:结肠上皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:P36 Cells、C8D1A Cells、HONE-1 Cells
    SKO3 Cells;背景说明:SK-OV-3由G.Trempe和L.J.Old在1973年从卵巢肿瘤病人的腹水分离得到。 此细胞对肿瘤坏死因子和几种细胞毒性药物包括白喉毒素、顺铂和阿霉素均耐受。 在裸鼠中致瘤,且形成与卵巢原位癌一致的中度分化的腺癌。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:143 B Cells、NCIH460 Cells、CV-1 in Origin Simian-7 Cells
    HuP-T4 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:LAN-6 Cells、OCI/AML-2 Cells、EL4 Cells
    HCC1833 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HBL-100 Cells、NGEC Cells、HUT-125 Cells
    DAN-G Cells;背景说明:胰腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:aNK Cells、MC 3T3-E1 Cells、Ramos-2G6-4C10 Cells
    HCCLM6 Cells;背景说明:肝癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:LM3 Cells、639 V Cells、Capan 2 Cells
    HCS-2/8 Cells;背景说明:软骨肉瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:293 c18 Cells、PVEC Cells、GM03570 Cells
    NE1-E6E7 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SNU668 Cells、H-1105 Cells、MOLT 4 Cells
    NCIH2110 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:6传代,每周换液2-3次;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:上皮细胞;相关产品有:CL1.0 Cells、SK-N-BE(1) Cells、LA 4 Cells
    HM1900 Cells;背景说明:小胶质 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Hs 636.T Cells、RFL6 Cells、Immortal Pig Intestinal-2I Cells
    STBCi058-B Cells(拥有STR基因鉴定图谱)
    ME180 Cells;背景说明:这株细胞来源于一个细胞集落不规则没有显著角质化的侵染性鳞状细胞癌。 单层培养的细胞间可以观察到带状连接,也注意到有细胞质张力丝。 1970年发现支原体污染并去除。 肿瘤坏死因子(TNF)α抑制ME-180的生长。 这株细胞含有人乳头瘤病毒(HPV)DNA,与HPV-39的同源性高于HPV-18。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:PNT1-a Cells、L78 Cells、Fetal Human Colon Cells
    Pa14C Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:DLD 1 Cells、HL7702 Cells、RPMI no. 8226 Cells
    KAT-5 Cells;背景说明:甲状腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NCIH2030 Cells、NCIH1993 Cells、CMT93 Cells
    BMSCs(mBMSCs) Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:U-2OS Cells、Cloudman S91 melanoma Cells、BALB/3T3 (clone A31) Cells
    bEnd.3[BEND3] Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:H1819 Cells、FL83B Cells、BC3 H1 Cells
    EM-3 Cells;背景说明:髓系白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:WERI-Rb-1 Cells、SUP T1 Cells、CNE-2 Cells
    NCI-H358 Cells;背景说明:1981年从一位开始化疗之前的患者的肿瘤组织中分离建株。超微结构研究表明细胞质中有Clara细胞的特征结构细胞表达主要的肺表面结合蛋白SP-A的蛋白和RNA。不表达SP-B和SP-C。他们在软琼脂中的克隆形成效率为0.83%。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:OCI Ly3 Cells、3T3F442A Cells、WPMY1 Cells
    MC3T3-L1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:C-Li-7 Cells、BV2 Cells、MES-SA-Dx5 Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    HT 1080.T Cells;背景说明:该细胞源自一名35岁患有纤维肉瘤的白人男性的结缔组织;ras+。;传代方法:1:4-1:8传代;2-3天换液1次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:SK-Hep1 Cells、HANK Cells、HFL Cells
    JVM2 Cells;背景说明:该细胞是 J.V.Melo从一位63岁患有套细胞淋巴瘤白人女性外周血中分离建立的,经EBV介导获得永生化,该细胞表达p16和细胞周期蛋白D2,低水平表达细胞周期蛋白D1。;传代方法:1:3传代,2-3天传一代;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:YES-2 Cells、H2198 Cells、SK-MES Cells
    C12 Cells;背景说明:该细胞株是YaffeD,SaxelO建立的小鼠成肌细胞系的亚株。该细胞分化较快,可形成能收缩的微管,产生特异的肌肉蛋白。在骨形态形成蛋白(BMP-2)的作用下,该细胞可由成肌细胞分化为成骨细胞。检测发现该细胞鼠痘病毒阴性。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维细胞样;梭形;相关产品有:DLM8 Cells、Hs 274.T Cells、Capan 2 Cells
    H2444 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:4传代;每周换液2次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:H1437 Cells、U266 B1 Cells、C4-2B Cells
    Tb 1-Lu Cells;背景说明:肺;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:FHs74 Int Cells、BT-474 Cells、P3HR1-BL Cells
    DMS-273 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:McA-RH7777 Cells、H2172 Cells、143B TK- Cells
    BayGenomics ES cell line CSI799 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line SYA144 Cells(拥有STR基因鉴定图谱)
    CBL63 Cells(拥有STR基因鉴定图谱)
    LuNm03 Cells(拥有STR基因鉴定图谱)
    Raji人Burkitt's淋巴瘤传代细胞活性强|送STR图谱
    RAW-ASC Cells(拥有STR基因鉴定图谱)
    RNK-9 Cells(拥有STR基因鉴定图谱)
    "    "PubMed=4894370; DOI=10.1002/1097-0142(196908)24:2<211::AID-CNCR2820240202>3.0.CO;2-3
    Southam C.M., Burchenal J.H., Clarkson B.D. Sr., Tanzi A., Mackey R., McComb V.
    Heterotransplantability of human cell lines derived from leukemia and lymphomas into immunologically tolerant rats.
    Cancer 24:211-222(1969)

    DOI=10.1007/BF02618370
    Stulberg C.S., Coriell L.L., Kniazeff A.J., Shannon J.E.
    The animal cell culture collection.
    In Vitro 5:1-16(1970)

    PubMed=4321017; DOI=10.1002/ijc.2910060315
    Durr F.E., Monroe J.H., Schmitter R., Traul K.A., Hirshaut Y.
    Studies on the infectivity and cytopathology of Epstein-Barr virus in human lymphoblastoid cells.
    Int. J. Cancer 6:436-449(1970)

    PubMed=4321974
    Maurer B.A., Imamura T., Wilbert S.M.
    Incidence of EB virus-containing cells in primary and secondary clones of several Burkitt lymphoma cell lines.
    Cancer Res. 30:2870-2875(1970)

    PubMed=4325933; DOI=10.1093/jnci/46.6.1243
    Pearson G.R., Henle G.S., Henle W.
    Production of antigens associated with Epstein-Barr virus in experimentally infected lymphoblastoid cell lines.
    J. Natl. Cancer Inst. 46:1243-1250(1971)

    PubMed=4122458; DOI=10.1002/ijc.2910100108
    Klein G., Dombos L., Gothoskar B.
    Sensitivity of Epstein-Barr virus (EBV) producer and non-producer human lymphoblastoid cell lines to superinfection with EB-virus.
    Int. J. Cancer 10:44-57(1972)

    PubMed=4347031; DOI=10.1093/jnci/48.1.87
    Hewetson J.F., Gothoskar B., Klein G.
    Radioiodine-labeled antibody test for the detection of membrane antigens associated with Epstein-Barr virus.
    J. Natl. Cancer Inst. 48:87-94(1972)

    PubMed=4550511; DOI=10.1073/pnas.69.1.78; PMCID=PMC427548
    Hampar B., Derge J.G., Martos L.M., Walker J.L.
    Synthesis of Epstein-Barr virus after activation of the viral genome in a 'virus-negative' human lymphoblastoid cell (Raji) made resistant to 5-bromodeoxyuridine.
    Proc. Natl. Acad. Sci. U.S.A. 69:78-82(1972)

    PubMed=4364259; DOI=10.1002/ijc.2910110210
    Klein G., Dombos L.
    Relationship between the sensitivity of EBV-carrying lymphoblastoid lines to superinfection and the inducibility of the resident viral genome.
    Int. J. Cancer 11:327-337(1973)

    PubMed=4736620; DOI=10.1111/j.1469-1809.1973.tb00588.x
    Povey S., Gardiner S.E., Watson B., Mowbray S., Harris H., Arthur E., Steel C.M., Blenkinsop C., Evans H.J.
    Genetic studies on human lymphoblastoid lines: isozyme analysis on cell lines from forty-one different individuals and on mutants produced following exposure to a chemical mutagen.
    Ann. Hum. Genet. 36:247-266(1973)

    PubMed=4366935
    Minowada J., Nonoyama M., Moore G.E., Rauch A.M., Pagano J.S.
    The presence of the Epstein-Barr viral genome in human lymphoblastoid B-cell lines and its absence in a myeloma cell line.
    Cancer Res. 34:1898-1903(1974)

    PubMed=168255; DOI=10.4049/jimmunol.115.1.243
    Hutt L.M., Huang Y.-T., Dascomb H.E., Pagano J.S.
    Enhanced destruction of lymphoid cell lines by peripheral blood leukocytes taken from patients with acute infectious mononucleosis.
    J. Immunol. 115:243-248(1975)

    PubMed=170370; DOI=10.1099/0022-1317-28-2-207
    Adams A., Strander H., Cantell K.
    Sensitivity of the Epstein-Barr virus transformed human lymphoid cell lines to interferon.
    J. Gen. Virol. 28:207-217(1975)

    PubMed=1086134
    Kaplan J., Peterson W.D. Jr.
    Detection of T-cell lymphoma-associated antigens on cord blood lymphocytes and phytohemagglutinin-stimulated blasts.
    Cancer Res. 36:3471-3475(1976)

    PubMed=216485
    Higgins N.P., Strauss B.S.
    Differences in the ability of human lymphoblastoid lines to exclude bromodeoxyuridine and in their sensitivity to methyl methanesulfonate and to incorporated [3H]thymidine.
    Cancer Res. 39:312-320(1979)

    PubMed=7316467; DOI=10.1111/j.1469-1809.1980.tb00953.x
    Povey S., Jeremiah S., Arthur E., Steel M., Klein G.
    Differences in genetic stability between human cell lines from patients with and without lymphoreticular malignancy.
    Ann. Hum. Genet. 44:119-133(1980)

    PubMed=6265077
    Pizzo P.A., Chattopadhyay S.K., Magrath I.T., Del Giacco E., Sherrick D., Gray T.E.
    Examination of Epstein-Barr virus and C-type proviral sequences in American and African lymphomas and derivative cell lines.
    Cancer Res. 41:3165-3171(1981)

    PubMed=6286763; DOI=10.4049/jimmunol.129.3.1336
    Benjamin D., Magrath I.T., Maguire R.T., Janus C., Todd-Kulikowsk H.D., Parsons R.G.
    Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.
    J. Immunol. 129:1336-1342(1982)

    PubMed=6806672; DOI=10.1038/298474a0
    Lenoir G.M., Preud'homme J.-L., Bernheim A., Berger R.
    Correlation between immunoglobulin light chain expression and variant translocation in Burkitt's lymphoma.
    Nature 298:474-476(1982)

    PubMed=6954533; DOI=10.1073/pnas.79.7.2194; PMCID=PMC346157
    Westin E.H., Gallo R.C., Arya S.K., Eva A., Souza L.M., Baluda M.A., Aaronson S.A., Wong-Staal F.
    Differential expression of the amv gene in human hematopoietic cells.
    Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982)

    PubMed=7060222; DOI=10.1016/0009-2797(82)90007-2
    Meltz M.L., Whittam N.J., Thornburg W.H.
    Reassociation of human lymphoblastoid cell DNA repair replicated following methyl methanesulfonate treatment.
    Chem. Biol. Interact. 39:77-88(1982)

    PubMed=6306472; DOI=10.1038/304135a0
    Hamlyn P.H., Rabbitts T.H.
    Translocation joins c-myc and immunoglobulin gamma 1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene.
    Nature 304:135-139(1983)

    PubMed=6419122; DOI=10.1038/306760a0
    Rabbitts T.H., Hamlyn P.H., Baer R.
    Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma.
    Nature 306:760-765(1983)

    PubMed=6600440; DOI=10.1007/BF02617996
    Uittenbogaart C.H., Cantor Y., Fahey J.L.
    Growth of human malignant lymphoid cell lines in serum-free medium.
    In Vitro 19:67-72(1983)

    PubMed=6231253; DOI=10.1002/ijc.2910330407
    Ehlin-Henriksson B., Klein G.
    Distinction between Burkitt lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation.
    Int. J. Cancer 33:459-463(1984)

    PubMed=6500159; DOI=10.1159/000163283
    Gershwin M.E., Lentz D., Owens R.B.
    Relationship between karyotype of tissue culture lines and tumorigenicity in nude mice.
    Exp. Cell Biol. 52:361-370(1984)

    PubMed=6547209; DOI=10.1038/309592a0
    Rabbitts T.H., Forster A., Hamlyn P.H., Baer R.
    Effect of somatic mutation within translocated c-myc genes in Burkitt's lymphoma.
    Nature 309:592-597(1984)

    PubMed=6582512; DOI=10.1073/pnas.81.2.568; PMCID=PMC344720
    Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
    Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
    Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984)

    PubMed=6592381; DOI=10.1093/jnci/73.4.841
    Favrot M.-C., Philip I., Philip T., Portoukalian J., Dore J.-F., Lenoir G.M.
    Distinct reactivity of Burkitt's lymphoma cell lines with eight monoclonal antibodies correlated with the ethnic origin.
    J. Natl. Cancer Inst. 73:841-847(1984)

    PubMed=2985879; DOI=10.1016/0145-2126(85)90084-0
    Drexler H.G., Gaedicke G., Minowada J.
    Isoenzyme studies in human leukemia-lymphoma cell lines -- 1 carboxylic esterase.
    Leuk. Res. 9:209-229(1985)

    PubMed=2998993
    Steel C.M., Morten J.E.N., Foster E.
    The cytogenetics of human B lymphoid malignancy: studies in Burkitt's lymphoma and Epstein-Barr virus-transformed lymphoblastoid cell lines.
    IARC Sci. Publ. 60:265-292(1985)

    PubMed=3159941; DOI=10.1016/0145-2126(85)90134-1
    Drexler H.G., Gaedicke G., Minowada J.
    Isoenzyme studies in human leukemia-lymphoma cell lines -- III Beta-hexosaminidase (E.C. 3.2.1.30).
    Leuk. Res. 9:549-559(1985)

    PubMed=3874327; DOI=10.1016/0145-2126(85)90133-x
    Drexler H.G., Gaedicke G., Minowada J.
    Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.
    Leuk. Res. 9:537-548(1985)

    PubMed=3905596
    Favrot M.-C., Philip I., Philip T., Cabrillat H., Pinatel C., Dore J.-F., Lenoir G.M.
    Immunophenotypic classification of 28 Burkitt cell lines with monoclonal antibodies and reagent selection for bone-marrow purging.
    IARC Sci. Publ. 60:447-452(1985)

    PubMed=3080238
    Sieverts H., Alabaster O., Goldschmidts W., Magrath I.T.
    Expression of surface antigens during the cell cycle in different growth phases of American and African Burkitt's lymphoma cell lines.
    Cancer Res. 46:1182-1188(1986)

    PubMed=3100061; DOI=10.1016/0008-8749(86)90099-7
    Benjamin D., Bazar L.S., Wallace B., Jacobson R.J.
    Heterogeneity of B-cell growth factor receptor reactivity in healthy donors and in patients with chronic lymphatic leukemia: relationship to B-cell-derived lymphokines.
    Cell. Immunol. 103:394-408(1986)

    PubMed=3518877; DOI=10.3109/07357908609038260
    Fogh J.
    Human tumor lines for cancer research.
    Cancer Invest. 4:157-184(1986)

    PubMed=3026973; DOI=10.1002/ijc.2910390215
    Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.
    Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.
    Int. J. Cancer 39:211-218(1987)

    PubMed=3034807; DOI=10.1002/ijc.2910390622
    Ohno H., Fukuhara S., Takahashi R., Mihara K.-i., Sugiyama T., Doi S., Uchino H., Toyoshima K.
    c-yes and bcl-2 genes located on 18q21.3 in a follicular lymphoma cell line carrying a t(14;18) chromosomal translocation.
    Int. J. Cancer 39:785-788(1987)

    PubMed=2470097; DOI=10.1073/pnas.86.9.3257; PMCID=PMC287109
    Shtivelman E., Henglein B., Groitl P., Lipp M., Bishop J.M.
    Identification of a human transcription unit affected by the variant chromosomal translocations 2;8 and 8;22 of Burkitt lymphoma.
    Proc. Natl. Acad. Sci. U.S.A. 86:3257-3260(1989)

    PubMed=2140233; DOI=10.1111/j.1440-1827.1990.tb01549.x
    Nakano A., Harada T., Morikawa S., Kato Y.
    Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines.
    Acta Pathol. Jpn. 40:107-115(1990)

    PubMed=1915267; DOI=10.1002/j.1460-2075.1991.tb07837.x; PMCID=PMC452998
    Farrell P.J., Allan G.J., Shanahan F., Vousden K.H., Crook T.
    p53 is frequently mutated in Burkitt's lymphoma cell lines.
    EMBO J. 10:2879-2887(1991)

    CLPUB00447
    Mulivor R.A., Suchy S.F.
    1992/1993 catalog of cell lines. NIGMS human genetic mutant cell repository. 16th edition. October 1992.
    (In misc. document) Institute for Medical Research (Camden, N.J.) NIH 92-2011; pp.1-918; National Institutes of Health; Bethesda; USA (1992)

    PubMed=1325212; DOI=10.1182/blood.V80.5.1289.1289
    Benjamin D., Knobloch T.J., Dayton M.A.
    Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10.
    Blood 80:1289-1298(1992)

    CLPUB00458
    Treichel R.S.
    Susceptibility to LAK-mediated cytotoxicity of multidrug-resistant variants of the human RAJI cell line is not related to expression of major cellular adhesion molecules.
    Ohio J. Sci. 93:14-18(1993)

    PubMed=8316623; DOI=10.2307/3578190
    Evans H.H., Ricanati M., Horng M.-F., Jiang Q.-Y., Mencl J., Olive P.L.
    DNA double-strand break rejoining deficiency in TK6 and other human B-lymphoblast cell lines.
    Radiat. Res. 134:307-315(1993)

    PubMed=8344493; DOI=10.1096/fasebj.7.10.8344493
    Bhatia K.G., Goldschmidts W., Gutierrez M.I., Gaidano G., Dalla-Favera R., Magrath I.T.
    Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.
    FASEB J. 7:951-956(1993)

    PubMed=8515068; DOI=10.4049/jimmunol.150.12.5418
    Jain V.K., Judde J.-G., Max E.E., Magrath I.T.
    Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.
    J. Immunol. 150:5418-5428(1993)

    PubMed=8176200; DOI=10.4049/jimmunol.152.10.4749
    Benjamin D., Sharma V., Knobloch T.J., Armitage R.J., Dayton M.A., Goodwin R.G.
    B cell IL-7. Human B cell lines constitutively secrete IL-7 and express IL-7 receptors.
    J. Immunol. 152:4749-4757(1994)

    PubMed=7849311; DOI=10.1182/blood.V85.4.893.bloodjournal854893
    Stranks G., Height S.E., Mitchell P., Jadayel D.M., Yuille M.A.R., De Lord C.F.M., Clutterbuck R.D., Treleaven J.G., Powles R.L., Nacheva E., Oscier D.G., Karpas A., Lenoir G.M., Smith S.D., Millar J.L., Catovsky D., Dyer M.J.S.
    Deletions and rearrangement of CDKN2 in lymphoid malignancy.
    Blood 85:893-901(1995)

    PubMed=8547074; DOI=10.1111/j.1365-2141.1995.tb05302.x
    Siebert R., Willers C.P., Schramm A., Fossa A., Dresen I.M.G., Uppenkamp M.J., Nowrousian M.R., Seeber S., Opalka B.
    Homozygous loss of the MTS1/p16 and MTS2/p15 genes in lymphoma and lymphoblastic leukaemia cell lines.
    Br. J. Haematol. 91:350-354(1995)

    PubMed=8558913
    Morita S., Tsuchiya S., Fujie H., Itano M., Ohashi Y., Minegishi M., Imaizumi M., Endo M., Takano N., Konno T.
    Cell surface c-kit receptors in human leukemia cell lines and pediatric leukemia: selective preservation of c-kit expression on megakaryoblastic cell lines during adaptation to in vitro culture.
    Leukemia 10:102-105(1996)

    PubMed=8568269; DOI=10.4049/jimmunol.156.4.1626
    Benjamin D., Sharma V., Kubin M., Klein J.L., Sartori A., Holliday J., Trinchieri G.
    IL-12 expression in AIDS-related lymphoma B cell lines.
    J. Immunol. 156:1626-1637(1996)

    PubMed=8847894
    Tani A., Tatsumi E., Nakamura F., Kumagai S., Kosaka Y., Sano K., Nakamura H., Amakawa R., Ohno H.
    Sensitivity to dexamethasone and absence of bcl-2 protein in Burkitt's lymphoma cell line (Black93) derived from a patient with acute tumor lysis syndrome: comparative study with other BL and non-BL lines.
    Leukemia 10:1592-1603(1996)

    PubMed=9192833
    Cherney B.W., Bhatia K.G., Sgadari C., Gutierrez M.I., Mostowski H.S., Pike S.E., Gupta G., Magrath I.T., Tosato G.
    Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.
    Cancer Res. 57:2508-2515(1997)

    PubMed=9473234; DOI=10.1182/blood.V91.5.1680
    Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.
    p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.
    Blood 91:1680-1687(1998)

    PubMed=9510473; DOI=10.1111/j.1349-7006.1998.tb00476.x; PMCID=PMC5921588
    Hosoya N., Hangaishi A., Ogawa S., Miyagawa K., Mitani K., Yazaki Y., Hirai H.
    Frameshift mutations of the hMSH6 gene in human leukemia cell lines.
    Jpn. J. Cancer Res. 89:33-39(1998)

    PubMed=9685479; DOI=10.1093/nar/26.16.3651; PMCID=PMC147775
    Hultdin M., Gronlund E., Norrback K.-F., Eriksson-Lindstrom E., Just T., Roos G.
    Telomere analysis by fluorescence in situ hybridization and flow cytometry.
    Nucleic Acids Res. 26:3651-3656(1998)

    PubMed=9737686; DOI=10.1038/sj.leu.2401112
    Zhang W.-J., Ohnishi K., Shigeno K., Fujisawa S., Naito K., Nakamura S., Takeshita K., Takeshita A., Ohno R.
    The induction of apoptosis and cell cycle arrest by arsenic trioxide in lymphoid neoplasms.
    Leukemia 12:1383-1391(1998)

    PubMed=9738977; DOI=10.1111/j.1349-7006.1998.tb03275.x; PMCID=PMC5921886
    Takizawa J., Suzuki R., Kuroda H., Utsunomiya A., Kagami Y., Joh T., Aizawa Y., Ueda R., Seto M.
    Expression of the TCL1 gene at 14q32 in B-cell malignancies but not in adult T-cell leukemia.
    Jpn. J. Cancer Res. 89:712-718(1998)

    PubMed=9787181; DOI=10.1182/blood.V92.9.3410
    Sakai A., Thieblemont C., Wellmann A., Jaffe E.S., Raffeld M.
    PTEN gene alterations in lymphoid neoplasms.
    Blood 92:3410-3415(1998)

    PubMed=9973220
    Gutierrez M.I., Cherney B.W., Hussain A., Mostowski H.S., Tosato G., Magrath I.T., Bhatia K.G.
    Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.
    Cancer Res. 59:696-703(1999)

    PubMed=10739008; DOI=10.1016/S0145-2126(99)00182-4
    Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
    Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.
    Leuk. Res. 24:255-262(2000)

    PubMed=11226526; DOI=10.1016/S0145-2126(00)00121-1
    Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
    Corrigendum to: Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines Leukemia Research 24 (2000), 255-262.
    Leuk. Res. 25:275-278(2001)

    PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459
    Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
    Short tandem repeat profiling provides an international reference standard for human cell lines.
    Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)

    PubMed=12145705; DOI=10.1038/sj.leu.2402519
    Langerak A.W., Moreau E.J., van Gastel-Mol E.J., van der Burg M., van Dongen J.J.M.
    Detection of clonal EBV episomes in lymphoproliferations as a diagnostic tool.
    Leukemia 16:1572-1573(2002)

    PubMed=12967475; DOI=10.1111/j.1349-7006.2003.tb01518.x; PMCID=PMC11160262
    Maesako Y., Uchiyama T., Ohno H.
    Comparison of gene expression profiles of lymphoma cell lines from transformed follicular lymphoma, Burkitt's lymphoma and de novo diffuse large B-cell lymphoma.
    Cancer Sci. 94:774-781(2003)

    PubMed=14982850; DOI=10.1016/S0002-9440(10)63184-7; PMCID=PMC1614712
    Takakuwa T., Luo W.-J., Ham M.F., Sakane-Ishikawa E., Wada N., Aozasa K.
    Integration of Epstein-Barr virus into chromosome 6q15 of Burkitt lymphoma cell line (Raji) induces loss of BACH2 expression.
    Am. J. Pathol. 164:967-974(2004)

    PubMed=15028022; DOI=10.1111/j.1440-1827.2004.01612.x
    Kamimura K., Hojo H., Abe M.
    Characterization of expression of protein kinase C isozymes in human B-cell lymphoma: relationship between its expression and prognosis.
    Pathol. Int. 54:224-230(2004)

    PubMed=15457187; DOI=10.1038/sj.leu.2403534
    Karpova M.B., Schoumans J., Ernberg I., Henter J.-I., Nordenskjold M., Fadeel B.
    Raji revisited: cytogenetics of the original Burkitt's lymphoma cell line.
    Leukemia 19:159-161(2005)

    PubMed=15901131; DOI=10.1016/j.prp.2005.01.002
    Murai Y., Hayashi S., Takahashi H., Tsuneyama K., Takano Y.
    Correlation between DNA alterations and p53 and p16 protein expression in cancer cell lines.
    Pathol. Res. Pract. 201:109-115(2005)

    PubMed=18357372; DOI=10.3892/or.19.4.889
    Pop I., Pop L., Vitetta E.S., Ghetie M.-A.
    Generation of multidrug resistant lymphoma cell lines stably expressing P-glycoprotein.
    Oncol. Rep. 19:889-895(2008)

    PubMed=19358282; DOI=10.1002/ijc.24351
    Inagaki A., Ishida T., Yano H., Ishii T., Kusumoto S., Ito A., Ri M., Mori F., Ding J.-M., Komatsu H., Iida S., Ueda R.
    Expression of the ULBP ligands for NKG2D by B-NHL cells plays an important role in determining their susceptibility to rituximab-induced ADCC.
    Int. J. Cancer 125:212-221(2009)

    PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113
    Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
    Signatures of mutation and selection in the cancer genome.
    Nature 463:893-898(2010)

    PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
    Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
    A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
    Cancer Res. 70:2158-2164(2010)

    PubMed=20454443; DOI=10.1155/2010/904767; PMCID=PMC2861168
    Uphoff C.C., Denkmann S.A., Steube K.G., Drexler H.G.
    Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in human and other primate cell lines.
    J. Biomed. Biotechnol. 2010:904767.1-904767.23(2010)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=22885699; DOI=10.1038/nature11378; PMCID=PMC3609867
    Schmitz R., Young R.M., Ceribelli M., Jhavar S., Xiao W.-M., Zhang M.-L., Wright G., Shaffer A.L. 3rd, Hodson D.J., Buras E., Liu X.-L., Powell J.I., Yang Y.-D., Xu W.-H., Zhao H., Kohlhammer H., Rosenwald A., Kluin P.M., Muller-Hermelink H.-K., Ott G., Gascoyne R.D., Connors J.M., Rimsza L.M., Campo E., Jaffe E.S., Delabie J., Smeland E.B., Ogwang M.D., Reynolds S.J., Fisher R.I., Braziel R.M., Tubbs R.R., Cook J.R., Weisenburger D.D., Chan W.-C., Pittaluga S., Wilson W., Waldmann T.A., Rowe M., Mbulaiteye S.M., Rickinson A.B., Staudt L.M.
    Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.
    Nature 490:116-120(2012)

    PubMed=24590883; DOI=10.1002/gcc.22161
    Murga Penas E.-M., Schilling G., Behrmann P., Klokow M., Vettorazzi E., Bokemeyer C., Dierlamm J.
    Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples.
    Genes Chromosomes Cancer 53:497-515(2014)

    PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
    Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
    A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
    OncoImmunology 3:e954893.1-e954893.12(2014)

    PubMed=25355872; DOI=10.1128/JVI.02570-14; PMCID=PMC4301145
    Cao S.-B., Strong M.J., Wang X., Moss W.N., Concha M., Lin Z., O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.
    High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.
    J. Virol. 89:713-729(2015)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
    Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
    A landscape of pharmacogenomic interactions in cancer.
    Cell 166:740-754(2016)

    PubMed=27566572; DOI=10.18632/oncotarget.11524; PMCID=PMC5325377
    Quentmeier H., Pommerenke C., Ammerpohl O., Geffers R., Hauer V., MacLeod R.A.F., Nagel S., Romani J., Rosati E., Rosen A., Uphoff C.C., Zaborski M., Drexler H.G.
    Subclones in B-lymphoma cell lines: isogenic models for the study of gene regulation.
    Oncotarget 7:63456-63465(2016)

    PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
    Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
    Characterization of human cancer cell lines by reverse-phase protein arrays.
    Cancer Cell 31:225-239(2017)

    PubMed=29892436; DOI=10.1098/rsos.172472; PMCID=PMC5990783
    Shioda S., Kasai F., Watanabe K., Kawakami K., Ohtani A., Iemura M., Ozawa M., Arakawa A., Hirayama N., Kawaguchi E., Tano T., Miyata S., Satoh M., Shimizu N., Kohara A.
    Screening for 15 pathogenic viruses in human cell lines registered at the JCRB Cell Bank: characterization of in vitro human cells by viral infection.
    R. Soc. Open Sci. 5:172472-172472(2018)

    PubMed=30285677; DOI=10.1186/s12885-018-4840-5; PMCID=PMC6167786
    Tan K.-T., Ding L.-W., Sun Q.-Y., Lao Z.-T., Chien W., Ren X., Xiao J.-F., Loh X.-Y., Xu L., Lill M., Mayakonda A., Lin D.-C., Yang H.H., Koeffler H.P.
    Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.
    BMC Cancer 18:940.1-940.13(2018)

    PubMed=30629668; DOI=10.1371/journal.pone.0210404; PMCID=PMC6328144
    Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.
    Screening human cell lines for viral infections applying RNA-Seq data analysis.
    PLoS ONE 14:E0210404-E0210404(2019)

    PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
    Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
    An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
    Cancer Res. 79:1263-1273(2019)"

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献
    "PubMed=4894370; DOI=10.1002/1097-0142(196908)24:2<211::AID-CNCR2820240202>3.0.CO;2-3
    Southam C.M., Burchenal J.H., Clarkson B.D. Sr., Tanzi A., Mackey R., McComb V.
    Heterotransplantability of human cell lines derived from leukemia and lymphomas into immunologically tolerant rats.
    Cancer 24:211-222(1969)

    DOI=10.1007/BF02618370
    Stulberg C.S., Coriell L.L., Kniazeff A.J., Shannon J.E.
    The animal cell culture collection.
    In Vitro 5:1-16(1970)

    PubMed=4321017; DOI=10.1002/ijc.2910060315
    Durr F.E., Monroe J.H., Schmitter R., Traul K.A., Hirshaut Y.
    Studies on the infectivity and cytopathology of Epstein-Barr virus in human lymphoblastoid cells.
    Int. J. Cancer 6:436-449(1970)

    PubMed=4321974
    Maurer B.A., Imamura T., Wilbert S.M.
    Incidence of EB virus-containing cells in primary and secondary clones of several Burkitt lymphoma cell lines.
    Cancer Res. 30:2870-2875(1970)

    PubMed=4325933; DOI=10.1093/jnci/46.6.1243
    Pearson G.R., Henle G.S., Henle W.
    Production of antigens associated with Epstein-Barr virus in experimentally infected lymphoblastoid cell lines.
    J. Natl. Cancer Inst. 46:1243-1250(1971)

    PubMed=4122458; DOI=10.1002/ijc.2910100108
    Klein G., Dombos L., Gothoskar B.
    Sensitivity of Epstein-Barr virus (EBV) producer and non-producer human lymphoblastoid cell lines to superinfection with EB-virus.
    Int. J. Cancer 10:44-57(1972)

    PubMed=4347031; DOI=10.1093/jnci/48.1.87
    Hewetson J.F., Gothoskar B., Klein G.
    Radioiodine-labeled antibody test for the detection of membrane antigens associated with Epstein-Barr virus.
    J. Natl. Cancer Inst. 48:87-94(1972)

    PubMed=4550511; DOI=10.1073/pnas.69.1.78; PMCID=PMC427548
    Hampar B., Derge J.G., Martos L.M., Walker J.L.
    Synthesis of Epstein-Barr virus after activation of the viral genome in a 'virus-negative' human lymphoblastoid cell (Raji) made resistant to 5-bromodeoxyuridine.
    Proc. Natl. Acad. Sci. U.S.A. 69:78-82(1972)

    PubMed=4364259; DOI=10.1002/ijc.2910110210
    Klein G., Dombos L.
    Relationship between the sensitivity of EBV-carrying lymphoblastoid lines to superinfection and the inducibility of the resident viral genome.
    Int. J. Cancer 11:327-337(1973)

    PubMed=4736620; DOI=10.1111/j.1469-1809.1973.tb00588.x
    Povey S., Gardiner S.E., Watson B., Mowbray S., Harris H., Arthur E., Steel C.M., Blenkinsop C., Evans H.J.
    Genetic studies on human lymphoblastoid lines: isozyme analysis on cell lines from forty-one different individuals and on mutants produced following exposure to a chemical mutagen.
    Ann. Hum. Genet. 36:247-266(1973)

    PubMed=4366935
    Minowada J., Nonoyama M., Moore G.E., Rauch A.M., Pagano J.S.
    The presence of the Epstein-Barr viral genome in human lymphoblastoid B-cell lines and its absence in a myeloma cell line.
    Cancer Res. 34:1898-1903(1974)

    PubMed=168255; DOI=10.4049/jimmunol.115.1.243
    Hutt L.M., Huang Y.-T., Dascomb H.E., Pagano J.S.
    Enhanced destruction of lymphoid cell lines by peripheral blood leukocytes taken from patients with acute infectious mononucleosis.
    J. Immunol. 115:243-248(1975)

    PubMed=170370; DOI=10.1099/0022-1317-28-2-207
    Adams A., Strander H., Cantell K.
    Sensitivity of the Epstein-Barr virus transformed human lymphoid cell lines to interferon.
    J. Gen. Virol. 28:207-217(1975)

    PubMed=1086134
    Kaplan J., Peterson W.D. Jr.
    Detection of T-cell lymphoma-associated antigens on cord blood lymphocytes and phytohemagglutinin-stimulated blasts.
    Cancer Res. 36:3471-3475(1976)

    PubMed=216485
    Higgins N.P., Strauss B.S.
    Differences in the ability of human lymphoblastoid lines to exclude bromodeoxyuridine and in their sensitivity to methyl methanesulfonate and to incorporated [3H]thymidine.
    Cancer Res. 39:312-320(1979)

    PubMed=7316467; DOI=10.1111/j.1469-1809.1980.tb00953.x
    Povey S., Jeremiah S., Arthur E., Steel M., Klein G.
    Differences in genetic stability between human cell lines from patients with and without lymphoreticular malignancy.
    Ann. Hum. Genet. 44:119-133(1980)

    PubMed=6265077
    Pizzo P.A., Chattopadhyay S.K., Magrath I.T., Del Giacco E., Sherrick D., Gray T.E.
    Examination of Epstein-Barr virus and C-type proviral sequences in American and African lymphomas and derivative cell lines.
    Cancer Res. 41:3165-3171(1981)

    PubMed=6286763; DOI=10.4049/jimmunol.129.3.1336
    Benjamin D., Magrath I.T., Maguire R.T., Janus C., Todd-Kulikowsk H.D., Parsons R.G.
    Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.
    J. Immunol. 129:1336-1342(1982)

    PubMed=6806672; DOI=10.1038/298474a0
    Lenoir G.M., Preud'homme J.-L., Bernheim A., Berger R.
    Correlation between immunoglobulin light chain expression and variant translocation in Burkitt's lymphoma.
    Nature 298:474-476(1982)

    PubMed=6954533; DOI=10.1073/pnas.79.7.2194; PMCID=PMC346157
    Westin E.H., Gallo R.C., Arya S.K., Eva A., Souza L.M., Baluda M.A., Aaronson S.A., Wong-Staal F.
    Differential expression of the amv gene in human hematopoietic cells.
    Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982)

    PubMed=7060222; DOI=10.1016/0009-2797(82)90007-2
    Meltz M.L., Whittam N.J., Thornburg W.H.
    Reassociation of human lymphoblastoid cell DNA repair replicated following methyl methanesulfonate treatment.
    Chem. Biol. Interact. 39:77-88(1982)

    PubMed=6306472; DOI=10.1038/304135a0
    Hamlyn P.H., Rabbitts T.H.
    Translocation joins c-myc and immunoglobulin gamma 1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene.
    Nature 304:135-139(1983)

    PubMed=6419122; DOI=10.1038/306760a0
    Rabbitts T.H., Hamlyn P.H., Baer R.
    Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma.
    Nature 306:760-765(1983)

    PubMed=6600440; DOI=10.1007/BF02617996
    Uittenbogaart C.H., Cantor Y., Fahey J.L.
    Growth of human malignant lymphoid cell lines in serum-free medium.
    In Vitro 19:67-72(1983)

    PubMed=6231253; DOI=10.1002/ijc.2910330407
    Ehlin-Henriksson B., Klein G.
    Distinction between Burkitt lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation.
    Int. J. Cancer 33:459-463(1984)

    PubMed=6500159; DOI=10.1159/000163283
    Gershwin M.E., Lentz D., Owens R.B.
    Relationship between karyotype of tissue culture lines and tumorigenicity in nude mice.
    Exp. Cell Biol. 52:361-370(1984)

    PubMed=6547209; DOI=10.1038/309592a0
    Rabbitts T.H., Forster A., Hamlyn P.H., Baer R.
    Effect of somatic mutation within translocated c-myc genes in Burkitt's lymphoma.
    Nature 309:592-597(1984)

    PubMed=6582512; DOI=10.1073/pnas.81.2.568; PMCID=PMC344720
    Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
    Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
    Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984)

    PubMed=6592381; DOI=10.1093/jnci/73.4.841
    Favrot M.-C., Philip I., Philip T., Portoukalian J., Dore J.-F., Lenoir G.M.
    Distinct reactivity of Burkitt's lymphoma cell lines with eight monoclonal antibodies correlated with the ethnic origin.
    J. Natl. Cancer Inst. 73:841-847(1984)

    PubMed=2985879; DOI=10.1016/0145-2126(85)90084-0
    Drexler H.G., Gaedicke G., Minowada J.
    Isoenzyme studies in human leukemia-lymphoma cell lines -- 1 carboxylic esterase.
    Leuk. Res. 9:209-229(1985)

    PubMed=2998993
    Steel C.M., Morten J.E.N., Foster E.
    The cytogenetics of human B lymphoid malignancy: studies in Burkitt's lymphoma and Epstein-Barr virus-transformed lymphoblastoid cell lines.
    IARC Sci. Publ. 60:265-292(1985)

    PubMed=3159941; DOI=10.1016/0145-2126(85)90134-1
    Drexler H.G., Gaedicke G., Minowada J.
    Isoenzyme studies in human leukemia-lymphoma cell lines -- III Beta-hexosaminidase (E.C. 3.2.1.30).
    Leuk. Res. 9:549-559(1985)

    PubMed=3874327; DOI=10.1016/0145-2126(85)90133-x
    Drexler H.G., Gaedicke G., Minowada J.
    Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.
    Leuk. Res. 9:537-548(1985)

    PubMed=3905596
    Favrot M.-C., Philip I., Philip T., Cabrillat H., Pinatel C., Dore J.-F., Lenoir G.M.
    Immunophenotypic classification of 28 Burkitt cell lines with monoclonal antibodies and reagent selection for bone-marrow purging.
    IARC Sci. Publ. 60:447-452(1985)

    PubMed=3080238
    Sieverts H., Alabaster O., Goldschmidts W., Magrath I.T.
    Expression of surface antigens during the cell cycle in different growth phases of American and African Burkitt's lymphoma cell lines.
    Cancer Res. 46:1182-1188(1986)

    PubMed=3100061; DOI=10.1016/0008-8749(86)90099-7
    Benjamin D., Bazar L.S., Wallace B., Jacobson R.J.
    Heterogeneity of B-cell growth factor receptor reactivity in healthy donors and in patients with chronic lymphatic leukemia: relationship to B-cell-derived lymphokines.
    Cell. Immunol. 103:394-408(1986)

    PubMed=3518877; DOI=10.3109/07357908609038260
    Fogh J.
    Human tumor lines for cancer research.
    Cancer Invest. 4:157-184(1986)

    PubMed=3026973; DOI=10.1002/ijc.2910390215
    Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.
    Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.
    Int. J. Cancer 39:211-218(1987)

    PubMed=3034807; DOI=10.1002/ijc.2910390622
    Ohno H., Fukuhara S., Takahashi R., Mihara K.-i., Sugiyama T., Doi S., Uchino H., Toyoshima K.
    c-yes and bcl-2 genes located on 18q21.3 in a follicular lymphoma cell line carrying a t(14;18) chromosomal translocation.
    Int. J. Cancer 39:785-788(1987)

    PubMed=2470097; DOI=10.1073/pnas.86.9.3257; PMCID=PMC287109
    Shtivelman E., Henglein B., Groitl P., Lipp M., Bishop J.M.
    Identification of a human transcription unit affected by the variant chromosomal translocations 2;8 and 8;22 of Burkitt lymphoma.
    Proc. Natl. Acad. Sci. U.S.A. 86:3257-3260(1989)

    PubMed=2140233; DOI=10.1111/j.1440-1827.1990.tb01549.x
    Nakano A., Harada T., Morikawa S., Kato Y.
    Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines.
    Acta Pathol. Jpn. 40:107-115(1990)

    PubMed=1915267; DOI=10.1002/j.1460-2075.1991.tb07837.x; PMCID=PMC452998
    Farrell P.J., Allan G.J., Shanahan F., Vousden K.H., Crook T.
    p53 is frequently mutated in Burkitt's lymphoma cell lines.
    EMBO J. 10:2879-2887(1991)

    CLPUB00447
    Mulivor R.A., Suchy S.F.
    1992/1993 catalog of cell lines. NIGMS human genetic mutant cell repository. 16th edition. October 1992.
    (In misc. document) Institute for Medical Research (Camden, N.J.) NIH 92-2011; pp.1-918; National Institutes of Health; Bethesda; USA (1992)

    PubMed=1325212; DOI=10.1182/blood.V80.5.1289.1289
    Benjamin D., Knobloch T.J., Dayton M.A.
    Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10.
    Blood 80:1289-1298(1992)

    CLPUB00458
    Treichel R.S.
    Susceptibility to LAK-mediated cytotoxicity of multidrug-resistant variants of the human RAJI cell line is not related to expression of major cellular adhesion molecules.
    Ohio J. Sci. 93:14-18(1993)

    PubMed=8316623; DOI=10.2307/3578190
    Evans H.H., Ricanati M., Horng M.-F., Jiang Q.-Y., Mencl J., Olive P.L.
    DNA double-strand break rejoining deficiency in TK6 and other human B-lymphoblast cell lines.
    Radiat. Res. 134:307-315(1993)

    PubMed=8344493; DOI=10.1096/fasebj.7.10.8344493
    Bhatia K.G., Goldschmidts W., Gutierrez M.I., Gaidano G., Dalla-Favera R., Magrath I.T.
    Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.
    FASEB J. 7:951-956(1993)

    PubMed=8515068; DOI=10.4049/jimmunol.150.12.5418
    Jain V.K., Judde J.-G., Max E.E., Magrath I.T.
    Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.
    J. Immunol. 150:5418-5428(1993)

    PubMed=8176200; DOI=10.4049/jimmunol.152.10.4749
    Benjamin D., Sharma V., Knobloch T.J., Armitage R.J., Dayton M.A., Goodwin R.G.
    B cell IL-7. Human B cell lines constitutively secrete IL-7 and express IL-7 receptors.
    J. Immunol. 152:4749-4757(1994)

    PubMed=7849311; DOI=10.1182/blood.V85.4.893.bloodjournal854893
    Stranks G., Height S.E., Mitchell P., Jadayel D.M., Yuille M.A.R., De Lord C.F.M., Clutterbuck R.D., Treleaven J.G., Powles R.L., Nacheva E., Oscier D.G., Karpas A., Lenoir G.M., Smith S.D., Millar J.L., Catovsky D., Dyer M.J.S.
    Deletions and rearrangement of CDKN2 in lymphoid malignancy.
    Blood 85:893-901(1995)

    PubMed=8547074; DOI=10.1111/j.1365-2141.1995.tb05302.x
    Siebert R., Willers C.P., Schramm A., Fossa A., Dresen I.M.G., Uppenkamp M.J., Nowrousian M.R., Seeber S., Opalka B.
    Homozygous loss of the MTS1/p16 and MTS2/p15 genes in lymphoma and lymphoblastic leukaemia cell lines.
    Br. J. Haematol. 91:350-354(1995)

    PubMed=8558913
    Morita S., Tsuchiya S., Fujie H., Itano M., Ohashi Y., Minegishi M., Imaizumi M., Endo M., Takano N., Konno T.
    Cell surface c-kit receptors in human leukemia cell lines and pediatric leukemia: selective preservation of c-kit expression on megakaryoblastic cell lines during adaptation to in vitro culture.
    Leukemia 10:102-105(1996)

    PubMed=8568269; DOI=10.4049/jimmunol.156.4.1626
    Benjamin D., Sharma V., Kubin M., Klein J.L., Sartori A., Holliday J., Trinchieri G.
    IL-12 expression in AIDS-related lymphoma B cell lines.
    J. Immunol. 156:1626-1637(1996)

    PubMed=8847894
    Tani A., Tatsumi E., Nakamura F., Kumagai S., Kosaka Y., Sano K., Nakamura H., Amakawa R., Ohno H.
    Sensitivity to dexamethasone and absence of bcl-2 protein in Burkitt's lymphoma cell line (Black93) derived from a patient with acute tumor lysis syndrome: comparative study with other BL and non-BL lines.
    Leukemia 10:1592-1603(1996)

    PubMed=9192833
    Cherney B.W., Bhatia K.G., Sgadari C., Gutierrez M.I., Mostowski H.S., Pike S.E., Gupta G., Magrath I.T., Tosato G.
    Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.
    Cancer Res. 57:2508-2515(1997)

    PubMed=9473234; DOI=10.1182/blood.V91.5.1680
    Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.
    p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.
    Blood 91:1680-1687(1998)

    PubMed=9510473; DOI=10.1111/j.1349-7006.1998.tb00476.x; PMCID=PMC5921588
    Hosoya N., Hangaishi A., Ogawa S., Miyagawa K., Mitani K., Yazaki Y., Hirai H.
    Frameshift mutations of the hMSH6 gene in human leukemia cell lines.
    Jpn. J. Cancer Res. 89:33-39(1998)

    PubMed=9685479; DOI=10.1093/nar/26.16.3651; PMCID=PMC147775
    Hultdin M., Gronlund E., Norrback K.-F., Eriksson-Lindstrom E., Just T., Roos G.
    Telomere analysis by fluorescence in situ hybridization and flow cytometry.
    Nucleic Acids Res. 26:3651-3656(1998)

    PubMed=9737686; DOI=10.1038/sj.leu.2401112
    Zhang W.-J., Ohnishi K., Shigeno K., Fujisawa S., Naito K., Nakamura S., Takeshita K., Takeshita A., Ohno R.
    The induction of apoptosis and cell cycle arrest by arsenic trioxide in lymphoid neoplasms.
    Leukemia 12:1383-1391(1998)

    PubMed=9738977; DOI=10.1111/j.1349-7006.1998.tb03275.x; PMCID=PMC5921886
    Takizawa J., Suzuki R., Kuroda H., Utsunomiya A., Kagami Y., Joh T., Aizawa Y., Ueda R., Seto M.
    Expression of the TCL1 gene at 14q32 in B-cell malignancies but not in adult T-cell leukemia.
    Jpn. J. Cancer Res. 89:712-718(1998)

    PubMed=9787181; DOI=10.1182/blood.V92.9.3410
    Sakai A., Thieblemont C., Wellmann A., Jaffe E.S., Raffeld M.
    PTEN gene alterations in lymphoid neoplasms.
    Blood 92:3410-3415(1998)

    PubMed=9973220
    Gutierrez M.I., Cherney B.W., Hussain A., Mostowski H.S., Tosato G., Magrath I.T., Bhatia K.G.
    Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.
    Cancer Res. 59:696-703(1999)

    PubMed=10739008; DOI=10.1016/S0145-2126(99)00182-4
    Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
    Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.
    Leuk. Res. 24:255-262(2000)

    PubMed=11226526; DOI=10.1016/S0145-2126(00)00121-1
    Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
    Corrigendum to: Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines Leukemia Research 24 (2000), 255-262.
    Leuk. Res. 25:275-278(2001)

    PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459
    Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
    Short tandem repeat profiling provides an international reference standard for human cell lines.
    Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)

    PubMed=12145705; DOI=10.1038/sj.leu.2402519
    Langerak A.W., Moreau E.J., van Gastel-Mol E.J., van der Burg M., van Dongen J.J.M.
    Detection of clonal EBV episomes in lymphoproliferations as a diagnostic tool.
    Leukemia 16:1572-1573(2002)

    PubMed=12967475; DOI=10.1111/j.1349-7006.2003.tb01518.x; PMCID=PMC11160262
    Maesako Y., Uchiyama T., Ohno H.
    Comparison of gene expression profiles of lymphoma cell lines from transformed follicular lymphoma, Burkitt's lymphoma and de novo diffuse large B-cell lymphoma.
    Cancer Sci. 94:774-781(2003)

    PubMed=14982850; DOI=10.1016/S0002-9440(10)63184-7; PMCID=PMC1614712
    Takakuwa T., Luo W.-J., Ham M.F., Sakane-Ishikawa E., Wada N., Aozasa K.
    Integration of Epstein-Barr virus into chromosome 6q15 of Burkitt lymphoma cell line (Raji) induces loss of BACH2 expression.
    Am. J. Pathol. 164:967-974(2004)

    PubMed=15028022; DOI=10.1111/j.1440-1827.2004.01612.x
    Kamimura K., Hojo H., Abe M.
    Characterization of expression of protein kinase C isozymes in human B-cell lymphoma: relationship between its expression and prognosis.
    Pathol. Int. 54:224-230(2004)

    PubMed=15457187; DOI=10.1038/sj.leu.2403534
    Karpova M.B., Schoumans J., Ernberg I., Henter J.-I., Nordenskjold M., Fadeel B.
    Raji revisited: cytogenetics of the original Burkitt's lymphoma cell line.
    Leukemia 19:159-161(2005)

    PubMed=15901131; DOI=10.1016/j.prp.2005.01.002
    Murai Y., Hayashi S., Takahashi H., Tsuneyama K., Takano Y.
    Correlation between DNA alterations and p53 and p16 protein expression in cancer cell lines.
    Pathol. Res. Pract. 201:109-115(2005)

    PubMed=18357372; DOI=10.3892/or.19.4.889
    Pop I., Pop L., Vitetta E.S., Ghetie M.-A.
    Generation of multidrug resistant lymphoma cell lines stably expressing P-glycoprotein.
    Oncol. Rep. 19:889-895(2008)

    PubMed=19358282; DOI=10.1002/ijc.24351
    Inagaki A., Ishida T., Yano H., Ishii T., Kusumoto S., Ito A., Ri M., Mori F., Ding J.-M., Komatsu H., Iida S., Ueda R.
    Expression of the ULBP ligands for NKG2D by B-NHL cells plays an important role in determining their susceptibility to rituximab-induced ADCC.
    Int. J. Cancer 125:212-221(2009)

    PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113
    Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
    Signatures of mutation and selection in the cancer genome.
    Nature 463:893-898(2010)

    PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
    Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
    A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
    Cancer Res. 70:2158-2164(2010)

    PubMed=20454443; DOI=10.1155/2010/904767; PMCID=PMC2861168
    Uphoff C.C., Denkmann S.A., Steube K.G., Drexler H.G.
    Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in human and other primate cell lines.
    J. Biomed. Biotechnol. 2010:904767.1-904767.23(2010)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=22885699; DOI=10.1038/nature11378; PMCID=PMC3609867
    Schmitz R., Young R.M., Ceribelli M., Jhavar S., Xiao W.-M., Zhang M.-L., Wright G., Shaffer A.L. 3rd, Hodson D.J., Buras E., Liu X.-L., Powell J.I., Yang Y.-D., Xu W.-H., Zhao H., Kohlhammer H., Rosenwald A., Kluin P.M., Muller-Hermelink H.-K., Ott G., Gascoyne R.D., Connors J.M., Rimsza L.M., Campo E., Jaffe E.S., Delabie J., Smeland E.B., Ogwang M.D., Reynolds S.J., Fisher R.I., Braziel R.M., Tubbs R.R., Cook J.R., Weisenburger D.D., Chan W.-C., Pittaluga S., Wilson W., Waldmann T.A., Rowe M., Mbulaiteye S.M., Rickinson A.B., Staudt L.M.
    Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.
    Nature 490:116-120(2012)

    PubMed=24590883; DOI=10.1002/gcc.22161
    Murga Penas E.-M., Schilling G., Behrmann P., Klokow M., Vettorazzi E., Bokemeyer C., Dierlamm J.
    Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples.
    Genes Chromosomes Cancer 53:497-515(2014)

    PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
    Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
    A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
    OncoImmunology 3:e954893.1-e954893.12(2014)

    PubMed=25355872; DOI=10.1128/JVI.02570-14; PMCID=PMC4301145
    Cao S.-B., Strong M.J., Wang X., Moss W.N., Concha M., Lin Z., O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.
    High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.
    J. Virol. 89:713-729(2015)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
    Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
    A landscape of pharmacogenomic interactions in cancer.
    Cell 166:740-754(2016)

    PubMed=27566572; DOI=10.18632/oncotarget.11524; PMCID=PMC5325377
    Quentmeier H., Pommerenke C., Ammerpohl O., Geffers R., Hauer V., MacLeod R.A.F., Nagel S., Romani J., Rosati E., Rosen A., Uphoff C.C., Zaborski M., Drexler H.G.
    Subclones in B-lymphoma cell lines: isogenic models for the study of gene regulation.
    Oncotarget 7:63456-63465(2016)

    PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
    Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
    Characterization of human cancer cell lines by reverse-phase protein arrays.
    Cancer Cell 31:225-239(2017)

    PubMed=29892436; DOI=10.1098/rsos.172472; PMCID=PMC5990783
    Shioda S., Kasai F., Watanabe K., Kawakami K., Ohtani A., Iemura M., Ozawa M., Arakawa A., Hirayama N., Kawaguchi E., Tano T., Miyata S., Satoh M., Shimizu N., Kohara A.
    Screening for 15 pathogenic viruses in human cell lines registered at the JCRB Cell Bank: characterization of in vitro human cells by viral infection.
    R. Soc. Open Sci. 5:172472-172472(2018)

    PubMed=30285677; DOI=10.1186/s12885-018-4840-5; PMCID=PMC6167786
    Tan K.-T., Ding L.-W., Sun Q.-Y., Lao Z.-T., Chien W., Ren X., Xiao J.-F., Loh X.-Y., Xu L., Lill M., Mayakonda A., Lin D.-C., Yang H.H., Koeffler H.P.
    Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.
    BMC Cancer 18:940.1-940.13(2018)

    PubMed=30629668; DOI=10.1371/journal.pone.0210404; PMCID=PMC6328144
    Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.
    Screening human cell lines for viral infections applying RNA-Seq data analysis.
    PLoS ONE 14:E0210404-E0210404(2019)

    PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
    Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
    An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
    Cancer Res. 79:1263-1273(2019)"
    图标技术资料

    需要更多技术资料 索取更多技术资料

    资料下载:

    产品(17).jpg 附 (下载 0 次)

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥850
    上海冠导生物工程有限公司
    2025年07月16日询价
    询价
    上海哈灵生物科技有限公司
    2025年07月06日询价
    ¥1200
    上海艾研生物科技有限公司
    2025年07月03日询价
    ¥1680
    上海沪震实业有限公司
    2025年03月20日询价
    ¥1280
    上海泽叶生物科技有限公司
    2025年07月11日询价
    文献支持
    Raji人Burkitt's淋巴瘤传代细胞活性强|送STR图
    ¥850 - 2150