Hep G2人肝癌传代细胞活性强|送STR图谱
文献支持

Hep G2人肝癌传代细胞活性强|送STR图谱

收藏
  • ¥850 - 2150
  • 冠导生物
  • Hep G2人肝癌传代细胞活性强|送STR图谱
  • 美国、德国、欧洲等地
  • 2025年07月07日
    avatar
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 文献和实验
    • 技术资料
    • 品系

      详见细胞说明资料

    • 细胞类型

      详见细胞说明资料

    • 肿瘤类型

      详见细胞说明资料

    • 供应商

      上海冠导生物工程有限公司

    • 库存

      ≥100瓶

    • 生长状态

      详见细胞说明资料

    • 年限

      详见细胞说明资料

    • 运输方式

      常温运输【复苏细胞】或干冰运输【冻存细胞】

    • 器官来源

      详见细胞说明资料

    • 是否是肿瘤细胞

      详见细胞说明资料

    • 细胞形态

      详见细胞说明资料

    • 免疫类型

      详见细胞说明资料

    • 物种来源

      详见细胞说明资料

    • 相关疾病

      详见细胞说明资料

    • 组织来源

      详见细胞说明资料

    • 英文名

      Hep G2人肝癌传代细胞活性强|送STR图谱

    • 规格

      1*10(6)Cellls/瓶

    "Hep G2人肝癌传代细胞活性强|送STR图谱
    传代方法:1:2-1:4(首次传代建议1:2)
    生长特性:贴壁生长
    换液频率:每周2-3次
    背景资料:是一种人肝癌细胞系,是来自15岁男性白人的组织,该患者患有高度分化的肝细胞癌;Hep G2细胞形态为上皮细胞样,模式染色体数为55;Hep G2细胞在免疫抑制小鼠中不致瘤。
    NCI-SNU-520 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SUM-159 Cells、H-2029 Cells、NCIH1770 Cells
    HBVSMC Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:CAL-27 Cells、Kelly Cells、OCI AML4 Cells
    MSCs(mUCMSCs) Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:NCIH64 Cells、NIH:OVCAR4 Cells、MD Anderson-Metastatic Breast-231 Cells
    【细胞培养中细菌、霉菌的污染情况总结】细菌:细菌在普通倒置显微镜下为黑色细沙状,根据感染细菌的不同,可有不同的外形,培养一般会浑浊变黄,对细胞生长影响明显。仔细检查一下器皿的灭菌情况,是否在GAO压灭菌时放气时间足够,压力足够!尤其是和储存培养接触的移管等物品,连续两次污染的话有可能造成储存污染,一定要注意!下次使用前检查一下培养是否存在浑浊的现象!可在培养中加相应的抗生素处理;霉菌:培养是清亮的,倒置显微镜下无杂质,37度孵箱培养2-3天,仍清亮,但出现絮状杂质,镜下可见呈细丝状的团状漂浮物,可看到明显的菌丝,细胞仍可生长,但时间长之后,细胞的活力状态变差,用铜溶擦拭CO2孵箱内,再把水盘里也加上饱和量的铜。或者在培养箱的托盘加入饱和的消毒二钠GAO盐体,可以防止霉菌污染。CO2孵箱被霉菌污染后,可把所有细胞暂时转移,采用擦洗孵箱(包括隔板,箱壁)。并把放置在孵箱内一个小时,使其蒸汽弥漫。待的气味消散后,再移入细胞。孵箱应定期清洁(2月左右),尤其在多雨的季节。其它培养箱清洗方法是:用84擦洗-清水擦洗-75%酒精擦洗-紫外灯照。预防霉菌污染,可在培养基里加3u/ml的两性霉素或制霉菌素或D或双抗;但细胞一旦污染,很难挽救,制霉菌素或D或双抗都于事无补,建议舍弃该污染细胞,将环境彻底消毒,如果所有细胞都污染,可能是系统污染,检查一下培养基和器材,如果只是个别污染,可能是操作问题,就要注意操作。
    Hep G2人肝癌传代细胞活性强|送STR图谱
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    产品包装形式:复苏细胞:T25培养瓶(一瓶)或冻存细胞:1ml冻存管(两支)
    来源说明:细胞主要来源ATCC、DSMZ等细胞库
    物种来源:Human\Mouse\Rat\Others
    KYSE30 Cells;背景说明:来源于一位64岁,患有高分化的中段食管鳞癌的男性患者。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:MCF7/WT Cells、Lymph Node Carcinoma of the prostate Cells、HCA7 Cells
    MHH-CALL-2 Cells;背景说明:急性B淋巴细胞白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:HIEC Cells、KYSE 270 Cells、OCI/AML-3 Cells
    HELA-GFP Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:251MG Cells、NCI-128 Cells、HuPT4 Cells
    Pan02 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:OVCAR.5 Cells、JTC-28 Cells、EHEB Cells
    细胞接收后的操作流程与注意事项:1)如果细胞为贴壁细胞,而收到时呈悬浮或者部分悬浮的状态,请将悬浮的细胞即时离心,加15%血清的完全培养基到新的培养皿/瓶继续培养3天;同时原培养瓶中剩下的贴壁细胞更换为15%血清的完全培养基培养3天。3天后若原瓶或者新瓶中的细胞都没有出现增值而是继续脱落死亡,请及时联系实验室技术人员会跟进解决;2)贴壁细胞生长缓慢;适当提GAO血清浓度(ZuiGAO不能超过20%),或可根据该细胞生长密度,考虑胰酶消化后,转移到新的培养瓶继续培养;3)生长不均:贴壁细胞若出现分布不均,成岛状生长,可将细胞进行消化,重悬打散细胞,加入新鲜培养基进行培养。
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    Hep G2人肝癌传代细胞活性强|送STR图谱
    形态特性:上皮细胞样
    淋巴母细胞(lymphoblast)是一类未成熟的淋巴细胞,通常在淋巴组织的发育过程中出现。它们在淋巴瘤和白血病的病理过程中扮演重要角色。淋巴母细胞是淋巴细胞的前体细胞,处于从造血干细胞向成熟淋巴细胞分化的过程中。它们可以来源于T细胞或B细胞。根据来源不同,淋巴母细胞可分为T细胞淋巴母细胞和B细胞淋巴母细胞。
    HGBEC Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:BEAS-2B Cells、MGH-U1 (EJ) Cells、LNCaP C4-2B Cells
    SN12C Cells;背景说明:详见相关文献介绍;传代方法:2x10^4 cells/ml;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:H727 Cells、D283-MED Cells、TJ905 Cells
    MKN-74 Cells;背景说明:胃癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:RMS 1598 Cells、IHHA-1 Cells、alpha-TC1-6 Cells
    P3/NS-1 Cells;背景说明:这是P3X63Ag8(ATCCTIB-9)的一个不分泌克隆。Kappa链合成了但不分泌。能抗0.1mM8-氮杂鸟嘌呤但不能在HAT培养基中生长。据报道它是由于缺失了3-酮类固醇还原酶活性的胆固醇营养缺陷型。检测表明肢骨发育畸形病毒(鼠痘)阴性。;传代方法:1:2传代,3天内可长满。;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:3LL Cells、SUM-102PT Cells、IPLB-Sf21 Cells
    HUT 28 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:6传代,每周换液2-3次;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:NCIH1666 Cells、SNU-475 Cells、MEG-01 Cells
    SV-HUC-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:Neuro 2a Cells、NCI-UMC-11 Cells、NCI-SNU-475 Cells
    143B TK- Cells;背景说明:详见相关文献介绍;传代方法:1:2—1:5传代;每周换液2-3次;生长特性:贴壁生长;形态特性:混合型;相关产品有:GM03571 Cells、MH-22a Cells、SK RC 52 Cells
    BCP-1 Cells;背景说明:详见相关文献介绍;传代方法:维持细胞浓度在2×105/ml-1×106/ml;根据细胞浓度每2-3天补液1次。;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:P3X63Ag8-6-5-3 Cells、High-5 Cells、H-810 Cells
    Madin-Darby Bovine Kidney Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:C3H/10T1/2 Cells、WM 239-A Cells、U-266 AR1 Cells
    1205-4 Cells(拥有STR基因鉴定图谱)
    Abcam HeLa BMPR1A KO Cells(拥有STR基因鉴定图谱)
    AG14985 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line RRE085 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line XG019 Cells(拥有STR基因鉴定图谱)
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    BY00868 Cells(拥有STR基因鉴定图谱)
    CU-32 Cells(拥有STR基因鉴定图谱)
    eFOP1-10 Cells(拥有STR基因鉴定图谱)
    GM05562 Cells(拥有STR基因鉴定图谱)
    16HBEo- Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:NCIH3255 Cells、MH7A Cells、aNK Cells
    A20 Cells;背景说明:淋巴瘤;BALB/cAnN;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:HNE2 Cells、HME1 Cells、95C Cells
    H2029 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:5传代;;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:CAL27 Cells、Panc08.13 Cells、Hs 274 Cells
    SW-1088 Cells;背景说明:星形胶质瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:CEMO-1 Cells、C17 Cells、PL45 Cells
    SHIN3 Cells;背景说明:卵巢浆液性囊腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HO8910PM Cells、H187 Cells、PC 61 Cells
    LNCaP clone FGC Cells;背景说明:人前列腺癌细胞LNCaP克隆FGC是从一位50岁白人男性(血型B+)的左锁骨淋巴结针刺活检中分离,该患者经确诊为前列腺癌转移。 这株细胞对5-α-二睾酮(生长调节子和酸性脂酶产物)有响应。这株细胞并不形成一致的单层,而是形成集落,在传代时可以用滴管反复吹吸打碎。它们仅仅轻轻地吸附在基底上,不形成汇合,很快使培养基变酸。生长很慢。传代后48小时内不应扰动。当培养瓶封包后,多数细胞从培养瓶底分离,悬浮在培养基中。收到后,在通常培养单层细胞的条件下培养24到48小时,以合细胞再贴壁。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:Centre Antoine Lacassagne-51 Cells、H2330 Cells、JKT-1 Cells
    TEC Cells;背景说明:胸腺;上皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:BNL.CL2 Cells、SK Mel 2 Cells、LM3 Cells
    Co 115 Cells;背景说明:结肠腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:COLO829 Cells、JHH7 Cells、NCIH1688 Cells
    TSU-Pr1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:H1568 Cells、COLO-829 Cells、R.K.13 Cells
    VK2 (E6/E7) Cells;背景说明:阴道;上皮细胞;HPV16转化;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:COLO-320 Cells、GM0637 Cells、CNE1-LUC Cells
    ME-1 [Human leukemia] Cells;背景说明:急性髓系白血病;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:Murine Thymic Epithelial Cell line 1 Cells、U373MG Cells、NCIH2591 Cells
    MDA-MB-157 Cells;背景说明:该细胞源自一位患有乳腺髓样癌的44岁黑人女性,表达WNT7B癌基因,细胞与细胞边界处有细胞桥粒、微绒毛、张力细丝。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:A 172 Cells、KGN Cells、LOUNH91 Cells
    MonoMac 6 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:MDA-MB-231-luc Cells、LA795 Cells、AMC-HN-8 Cells
    A31-714 C4 Cells(拥有STR基因鉴定图谱)
    Hs746-T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:DU 4475 Cells、NCI-H2126 Cells、KY-270 Cells
    Hep G2人肝癌传代细胞活性强|送STR图谱
    BE2-M17 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:COLO680N Cells、CDC/EU.HMEC-1 Cells、SW1222 Cells
    MC/9 Cells;背景说明:肥大细胞;C57BL/6 x A/J;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:A7r5 Cells、H-1355 Cells、CMEC/D3 Cells
    MyLa2059 Cells;背景说明:皮肤;T淋巴细胞瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:SKMEL-24 Cells、PC 61 5.3 Cells、NCI-H1781 Cells
    Karpas 299 Cells;背景说明:间变性大细胞淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:HNE-1 Cells、AML-12 Cells、RINm5F Cells
    SW-900 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HD11 Cells、Hs68 Cells、AMO1 Cells
    EFM-192C Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:C-33A Cells、MDAPC2B Cells、293-H Cells
    SK HEP-1 Cells;背景说明:SK-HEP-1细胞系已被鉴定为内皮来源。该细胞系为异倍体女性人(XX),染色体在亚三倍体范围内。在裸鼠中,它能形成与肝癌相一致的大细胞癌;传代方法:1:3传代,2-3天换液一次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HEK-293-H Cells、HTR8 Cells、HTori 3 Cells
    GP11 Cells(拥有STR基因鉴定图谱)
    HAP1 PLK3 (-) 2 Cells(拥有STR基因鉴定图谱)
    HFF1 Cells;背景说明:详见相关文献介绍;传代方法:1:5-1:7传代;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:BNL 1ME A.7R.1 Cells、MB39 Cells、H295R-S1 Cells
    3T3-Swiss Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SK Mel 24 Cells、LIPF155C Cells、DMS-79 Cells
    SK Col 1 Cells;背景说明:该细胞来源于结直肠病人的转移性腹水。;传代方法:1:2-1:3传代,每周2-3次。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:KOSC-2 Cells、NCIH2228 Cells、NCI H929 Cells
    SHSY5Y Cells;背景说明:据报道,该细胞的密度可高达1×106cells/cm2,具有中等水平的多巴胺β羟化酶的活性。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:H1666 Cells、MEF Cells、FL-83B Cells
    MDA-MB-435 S Cells;背景说明:MDA-MB-435S是一种纺锤形的细胞,1976年由其亲本(435)中筛选得到。435是从31岁的转移性乳腺导管腺癌女性患者胸水中分离得到。当用荧光染料对微管蛋白进行染色时亲本细胞显现散布特征(II型)。最近通过cDNA阵列研究表明,亲本(MDA-MB-435)可归入黑素瘤起源。;传代方法:消化3-5分钟,1:2,3天内可长满;生长特性:贴壁生长;形态特性:纺锤形;相关产品有:MDA231-LM2 Cells、DHL6 Cells、INS1E Cells
    Mouse Forestomach Carcinoma Cells;背景说明:胃癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MCA 205 Cells、GM00346B Cells、Capan-1 Cells
    RMS1598 Cells;背景说明:详见相关文献介绍;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:NCIH1355 Cells、T2 Cells、Ramos 1 Cells
    ROS1728 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:T_T_ Cells、SW962 Cells、SW 954 Cells
    HT1080-hNIS-Puro Cells(拥有STR基因鉴定图谱)
    KSCBi001-A Cells(拥有STR基因鉴定图谱)
    mPitA-15 Cells(拥有STR基因鉴定图谱)
    NYSCF-MS-1005-10006-106-Skin-mi-iPSC1 Cells(拥有STR基因鉴定图谱)
    RIN 100/6 Cells(拥有STR基因鉴定图谱)
    TS 10-7 Cells(拥有STR基因鉴定图谱)
    UKTS8878 Cells(拥有STR基因鉴定图谱)
    HG02675 Cells(拥有STR基因鉴定图谱)
    KOPN8 Cells;背景说明:B淋巴细胞白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:HCC 94 Cells、OE-19 Cells、BS-C-1 Cells
    RERFLCMS Cells;背景说明:详见相关文献介绍;传代方法:每周换液2次。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:DI TNC-1 Cells、Murine Leydig Tumor Cell line-1 Cells、CV-1 in Origin Simian-1 Cells
    VMM5 Cells;背景说明:黑色素瘤;神经节转移;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NuTu 19 Cells、HCC9724 Cells、EM3 Cells
    CAL148 Cells;背景说明:乳腺癌;胸腔积液转移;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Hs895T Cells、QG-56 Cells、SKOV-433 Cells
    MM1S Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代,2-3天换液1次。;生长特性:混合生长;形态特性:淋巴母细胞样;相关产品有:L-1210 Cells、FAT Cells、B5537SKIN Cells
    MM1S Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代,2-3天换液1次。;生长特性:混合生长;形态特性:淋巴母细胞样;相关产品有:L-1210 Cells、FAT Cells、B5537SKIN Cells
    U-118 MG Cells;背景说明:注意: 据报道来自不同个体的胶质母细胞瘤细胞株U-118 MG (HTB-15) 和 U-138 MG (HTB-16)有着一致的VNTR和相近的STR模式。 U-118 MG 和 U-138 MG细胞遗传学上很相似并有至少六个衍生标记染色体。 这是1966年至1969年间J. Ponten和同事从恶性神经胶质瘤中构建的细胞株中的一株(其它包括ATCC HTB-14和 ATCC HTB-16 and ATCC HTB-17)。 1987年用BM-Cycline培养6周去除了支原体污染。 ;传代方法: 消化3-5分钟。1:2传代。3天内可长满。;生长特性:贴壁生长;形态特性:混合型;相关产品有:DH82 Cells、NTHY-ORI3.1 Cells、Ontario Cancer Institute-Acute Myeloid Leukemia-3 Cells
    NPC-TW-039 Cells;背景说明:鼻咽癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MDAMB231 Cells、OV433 Cells、LWnt3A Cells
    P3/NS1/1-Ag4-1 Cells;背景说明:这是P3X63Ag8(ATCCTIB-9)的一个不分泌克隆。Kappa链合成了但不分泌。能抗0.1mM8-氮杂鸟嘌呤但不能在HAT培养基中生长。据报道它是由于缺失了3-酮类固醇还原酶活性的胆固醇营养缺陷型。检测表明肢骨发育畸形病毒(鼠痘)阴性。;传代方法:1:2传代,3天内可长满。;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:EU-3 Cells、GM 2132 Cells、SHP-77 Cells
    HCC-9724 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:LN299 Cells、L-6 myoblast Cells、697 Cells
    MM1S Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代,2-3天换液1次。;生长特性:混合生长;形态特性:淋巴母细胞样;相关产品有:L-1210 Cells、FAT Cells、B5537SKIN Cells
    MNNG/HOS Clone F-5 Cells;背景说明:骨肉瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SJSA1 Cells、DHL-16 Cells、GM02131A Cells
    HO-1-N-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:PGLH7 Cells、Kobe university Oral Squamous Cell culture-2 Cells、HUSMC Cells
    GP293 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:KU 812 Cells、CL-11 Cells、BMSC/hBMSCs Cells
    C4I Cells;背景说明:宫颈鳞癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:V 79-4 Cells、SL-1 Cells、MUM2B Cells
    SV-HUC/ras-E Cells(拥有STR基因鉴定图谱)
    Hs-746T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:NOZAWA Cells、CCRF/CEM-C7 Cells、EAhy926 Cells
    OV433 Cells;背景说明:卵巢癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HMO6 Cells、SH-SY5Y Cells、RSC96 Cells
    NCI-747 Cells;背景说明:详见相关文献介绍;传代方法:1:2—1:4传代,每周换液2次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:Ramos-2G6-4C10 Cells、CHG5 Cells、FRO81-2 Cells
    AN3CA Cells;背景说明:AN3CA细胞建系于1964年。它衍生于子宫内膜癌患者淋巴结转移组织,具有癌细胞的基本特性,能在体外长期传代培养,接种实验动物产生明显肿瘤。但细胞的生物学特性及超微结构尚未深入研究,仅发现该细胞系促黑激素合成为阴性。细胞常用于人子宫内膜癌细胞生物学及其相关特性研究。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:MB 157 Cells、C6661 Cells、Rat podocyte Cells
    SK-MEL5 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:6传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:星形的;相关产品有:HemECs Cells、HUT-28 Cells、SW 403 Cells
    SY5Y Cells;背景说明:据报道,该细胞的密度可高达1×106cells/cm2,具有中等水平的多巴胺β羟化酶的活性。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:DBTRG-05MG Cells、BHT-101 Cells、TE11 Cells
    HCoEpiC Cells;背景说明:结肠上皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:P36 Cells、C8D1A Cells、HONE-1 Cells
    PK(15) Cells;背景说明:PK-15细胞建系于1955(Stice,E)。是PK-1a细胞的克隆系。该细胞系可用于多种病毒的增值及特性研究。另外,电镜观察发现,PK-15细胞内有C-型病毒颗粒存在,是研究C-型病毒的材料。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:SW403 Cells、T/G HA-VSMC Cells、BGC823 Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    Wien133 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:CHL-CL-11 Cells、BALL1 Cells、LTEP-a2 Cells
    SJCRH30 Cells;背景说明:肺泡横纹肌肉瘤;骨髓转移;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SBC-3 Cells、SKNEP-1 Cells、TM3 Cells
    DHL-16 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:MyLa2059 Cells、H1869 Cells、MDA231-LM2-4175 Cells
    HET-1A Cells;背景说明:食管;上皮细胞;SV40转化;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:GM3190 Cells、H8 Cells、SK-N-F1 Cells
    GM06141B Cells;背景说明:这株淋巴母细胞样细胞株,源自一位30岁白人男性一,患有恶性红细胞白血病,能够自然产生并能诱导球蛋白合成。细胞的EB病毒核抗原阴性,没有表面免疫球蛋白与细胞质免疫球蛋白。HEL细胞表达HLA抗原(HLA-A3,AW32,BW35),β-2小球蛋白,一定比例的细胞还表达Ia抗原。这个细胞株提供了一种用于研究红细胞分化和球蛋白基因表达的模型。它类似于小鼠中的血友病。;传代方法:1:2传代。3天内可长满。;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:NCI-SNU-398 Cells、MC-26 Cells、EJ 138 Cells
    LIM-1215 Cells;背景说明:结直肠癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SU-DHL-4 Cells、OPM2 Cells、C33A Cells
    BayGenomics ES cell line CSH727 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line RST011 Cells(拥有STR基因鉴定图谱)
    BrE1 Cells(拥有STR基因鉴定图谱)
    L.P3 Co-3 Cells(拥有STR基因鉴定图谱)
    Hep G2人肝癌传代细胞活性强|送STR图谱
    PMab-301 Cells(拥有STR基因鉴定图谱)
    R52.625 Cells(拥有STR基因鉴定图谱)
    "    "Patent=US4393133
    Knowles B.B., Aden D.P.
    Human hepatoma derived cell line, process for preparation thereof, and uses therefor.
    Patent number US4393133, 12-Jul-1983

    PubMed=2439335; DOI=10.1111/j.1432-1033.1987.tb11497.x
    Vincent C., Marceau M., Blangarin P., Bouic P., Madjar J.-J., Revillard J.-P.
    Purification of alpha 1-microglobulin produced by human hepatoma cell lines. Biochemical characterization and comparison with alpha 1-microglobulin synthesized by human hepatocytes.
    Eur. J. Biochem. 165:699-704(1987)

    PubMed=8224613; DOI=10.1096/fasebj.7.14.8224613
    Puisieux A., Galvin K., Troalen F., Bressac B., Marcais C., Galun E., Ponchel F., Yakicier C., Ji J.-W., Ozturk M.
    Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines.
    FASEB J. 7:1407-1413(1993)

    PubMed=8384076; DOI=10.1016/0165-4608(93)90227-D
    Chen H.-L., Chiu T.-S., Chen P.-J., Chen D.-S.
    Cytogenetic studies on human liver cancer cell lines.
    Cancer Genet. Cytogenet. 65:161-166(1993)

    PubMed=8389256; DOI=10.1093/carcin/14.5.987
    Hsu I.-C., Tokiwa T., Bennett W.P., Metcalf R.A., Welsh J.A., Sun T.-T., Harris C.C.
    p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines.
    Carcinogenesis 14:987-992(1993)

    PubMed=7972006; DOI=10.1073/pnas.91.23.11045; PMCID=PMC45163
    Okamoto A., Demetrick D.J., Spillare E.A., Hagiwara K., Hussain S.P., Bennett W.P., Forrester K., Gerwin B.I., Serrano M., Beach D.H., Harris C.C.
    Mutations and altered expression of p16INK4 in human cancer.
    Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994)

    PubMed=8050184; DOI=10.1111/j.1365-2249.1994.tb06089.x; PMCID=PMC1534706
    Wadee A.A., Paterson A., Coplan K.A., Reddy S.G.
    HLA expression in hepatocellular carcinoma cell lines.
    Clin. Exp. Immunol. 97:328-333(1994)

    PubMed=8835345; DOI=10.1002/(SICI)1096-9071(199602)48:2<133::AID-JMV3>3.0.CO;2-A
    Tsuboi S., Nagamori S., Miyazaki M., Mihara K., Fukaya K.-i., Teruya K., Kosaka T., Tsuji T., Namba M.
    Persistence of hepatitis C virus RNA in established human hepatocellular carcinoma cell lines.
    J. Med. Virol. 48:133-140(1996)

    DOI=10.11418/jtca1981.16.3_173
    Mihara K., Miyazaki M., Fushimi K., Tsuji T., Inoue Y., Fukaya K.-i., Ohashi R., Namba M.
    The p53 gene status and other cellular characteristics of human cell lines maintained in our laboratory.
    Tissue Cult. Res. Commun. 16:173-178(1997)

    PubMed=9178645; DOI=10.1006/cimm.1997.1108
    Nakao M., Sata M., Saitsu H., Yutani S., Kawamoto M., Kojiro M., Itoh K.
    CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.
    Cell. Immunol. 177:176-181(1997)

    PubMed=9359923; DOI=10.18926/AMO/30789
    Mihara K., Miyazaki M., Kondo T., Fushimi K., Tsuji T., Inoue Y., Fukaya K.-i., Ishioka C., Namba M.
    Yeast functional assay of the p53 gene status in human cell lines maintained in our laboratory.
    Acta Med. Okayama 51:261-265(1997)

    PubMed=11050057; DOI=10.1053/jhep.2000.19349
    Wong N., Lai P.B.-S., Pang E., Leung T.W.-T., Lau J.W.-Y., Johnson P.J.
    A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping.
    Hepatology 32:1060-1068(2000)

    PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459
    Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
    Short tandem repeat profiling provides an international reference standard for human cell lines.
    Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)

    PubMed=11981770; DOI=10.1053/jhep.2002.32668
    Clemens D.L., Forman A., Jerrells T.R., Sorrell M.F., Tuma D.J.
    Relationship between acetaldehyde levels and cell survival in ethanol-metabolizing hepatoma cells.
    Hepatology 35:1196-1204(2002)

    PubMed=12029633; DOI=10.1053/jhep.2002.33683
    Yasui K., Arii S., Zhao C., Imoto I., Ueda M., Nagai H., Emi M., Inazawa J.
    TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas.
    Hepatology 35:1476-1484(2002)

    PubMed=12068308; DOI=10.1038/nature00766
    Davies H.R., Bignell G.R., Cox C., Stephens P.J., Edkins S., Clegg S., Teague J.W., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C.S., Shipley J.M., Hargrave D., Pritchard-Jones K., Maitland N.J., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A.M., Nicholson A., Ho J.W.C., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H.F., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.
    Mutations of the BRAF gene in human cancer.
    Nature 417:949-954(2002)

    DOI=10.1385/CP:1:3-4:313
    Pang R.T.-K., Poon T.C.-W., Wong N., Lai P.B.-S., Wong N.L.-Y., Chan C.M.-L., Yu J.W.S., Chan A.T.-C., Sung J.J.-Y.
    Comparison of protein expression patterns between hepatocellular carcinoma cell lines and a hepatoblastoma cell line.
    Clin. Proteomics 1:313-331(2004)

    PubMed=14980111
    Zhai B.-J., Wu F., Shao Z.-Y., Hu K., Zhao C.-L., Wang Z.-B.
    Establishment of human hepatocellular carcinoma multidrug-resistance cell line (HepG2/Adm) and study apoptosis induced by low-frequency pulse ultrasound exposure.
    Zhonghua Gan Zang Bing Za Zhi 12:95-98(2004)

    PubMed=15767549; DOI=10.1158/1535-7163.MCT-04-0234
    Nakatsu N., Yoshida Y., Yamazaki K., Nakamura T., Dan S., Fukui Y., Yamori T.
    Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.
    Mol. Cancer Ther. 4:399-412(2005)

    PubMed=16181800; DOI=10.1016/j.biocel.2005.07.010
    Donohue T.M., Osna N.A., Clemens D.L.
    Recombinant Hep G2 cells that express alcohol dehydrogenase and cytochrome P450 2E1 as a model of ethanol-elicited cytotoxicity.
    Int. J. Biochem. Cell Biol. 38:92-101(2006)

    PubMed=16935386; DOI=10.1016/j.jhep.2006.05.019
    Sun D.-X., Nassal M.
    Stable HepG2- and Huh7-based human hepatoma cell lines for efficient regulated expression of infectious hepatitis B virus.
    J. Hepatol. 45:636-645(2006)

    PubMed=17254797; DOI=10.1016/j.biologicals.2006.10.001
    Azari S., Ahmadi N., Jeddi-Tehrani M., Shokri F.
    Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran.
    Biologicals 35:195-202(2007)

    PubMed=19215227; DOI=10.1111/j.1349-7006.2009.01082.x; PMCID=PMC11158180
    Kuwahara Y., Li L., Baba T., Nakagawa H., Shimura T., Yamamoto Y., Ohkubo Y., Fukumoto M.
    Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays.
    Cancer Sci. 100:747-752(2009)

    PubMed=19751877; DOI=10.1016/j.humpath.2009.07.003
    Lopez-Terrada D.H., Cheung S.-W., Finegold M.J., Knowles B.B.
    Hep G2 is a hepatoblastoma-derived cell line.
    Hum. Pathol. 40:1512-1515(2009)

    PubMed=20069059; DOI=10.1155/2010/437143; PMCID=PMC2801507
    Srisomsap C., Sawangareetrakul P., Subhasitanont P., Chokchaichamnankit D., Chiablaem K., Bhudhisawasdi V., Wongkham S., Svasti J.
    Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes.
    J. Biomed. Biotechnol. 2010:437143.1-437143.18(2010)

    PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
    Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
    A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
    Cancer Res. 70:2158-2164(2010)

    PubMed=20228232; DOI=10.1124/dmd.109.031831; PMCID=PMC2879958
    Hart S.N., Li Y., Nakamoto K., Subileau E.-A., Steen D., Zhong X.-B.
    A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues.
    Drug Metab. Dispos. 38:988-994(2010)

    PubMed=20937217; DOI=10.1170/149
    Di Masi A., Viganotti M., Antoccia A., Magrelli A., Salvatore M., Azzalin G., Tosto F., Lorenzetti S., Maranghi F., Mantovani A., Macino G., Tanzarella C., Taruscio D.
    Characterization of HuH6, Hep3B, HepG2 and HLE liver cancer cell lines by WNT/beta-catenin pathway, microRNA expression and protein expression profile.
    Cell. Mol. Biol. 56:OL1299-OL1317(2010)

    PubMed=21269460; DOI=10.1186/1752-0509-5-17; PMCID=PMC3039570
    Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Burckstummer T., Bennett K.L., Superti-Furga G., Colinge J.
    Initial characterization of the human central proteome.
    BMC Syst. Biol. 5:17.1-17.13(2011)

    PubMed=22278370; DOI=10.1074/mcp.M111.014050; PMCID=PMC3316730
    Geiger T., Wehner A., Schaab C., Cox J., Mann M.
    Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.
    Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=23325432; DOI=10.1101/gr.147942.112; PMCID=PMC3589544
    Varley K.E., Gertz J., Bowling K.M., Parker S.L., Reddy T.E., Pauli-Behn F., Cross M.K., Williams B.A., Stamatoyannopoulos J.A., Crawford G.E., Absher D.M., Wold B.J., Myers R.M.
    Dynamic DNA methylation across diverse human cell lines and tissues.
    Genome Res. 23:555-567(2013)

    PubMed=23505090; DOI=10.1002/hep.26402
    Wang K., Lim H.Y., Shi S., Lee J., Deng S.-B., Xie T., Zhu Z., Wang Y.-L., Pocalyko D., Yang W.J., Rejto P.A., Mao M., Park C.-K., Xu J.-C.
    Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.
    Hepatology 58:706-717(2013)

    PubMed=23887712; DOI=10.1038/ncomms3218; PMCID=PMC3731665
    Nault J.-C., Mallet M., Pilati C., Calderaro J., Bioulac-Sage P., Laurent C., Laurent A., Cherqui D., Balabaud C., Zucman-Rossi J.
    High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions.
    Nat. Commun. 4:2218.1-2218.7(2013)

    PubMed=24116068; DOI=10.1371/journal.pone.0075692; PMCID=PMC3792989
    Weiskirchen R., Weimer J., Meurer S.K., Kron A., Seipel B., Vater I., Arnold N., Siebert R., Xu L.-M., Friedman S.L., Bergmann C.
    Genetic characteristics of the human hepatic stellate cell line LX-2.
    PLoS ONE 8:E75692-E75692(2013)

    PubMed=24618588; DOI=10.1371/journal.pone.0091433; PMCID=PMC3950186
    Chernobrovkin A.L., Zubarev R.A.
    Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.
    PLoS ONE 9:E91433-E91433(2014)

    PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
    Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
    A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
    OncoImmunology 3:e954893.1-e954893.12(2014)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25574106; DOI=10.3748/wjg.v21.i1.311; PMCID=PMC4284350
    Cevik D., Yildiz G., Ozturk M.
    Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations.
    World J. Gastroenterol. 21:311-317(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=26160117; DOI=10.1093/toxsci/kfv136; PMCID=PMC4583060
    Sison-Young R.L.C., Mitsa D., Jenkins R.E., Mottram D., Alexandre E., Richert L., Aerts H., Weaver R.J., Jones R.P., Johann E., Hewitt P.G., Ingelman-Sundberg M., Goldring C.E.P., Kitteringham N.R., Park B.K.
    Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication.
    Toxicol. Sci. 147:412-424(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=26825538; DOI=10.1016/j.jprot.2016.01.016
    Wisniewski J.R., Vildhede A., Noren A., Artursson P.
    In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes.
    J. Proteomics 136:234-247(2016)

    PubMed=27027780; DOI=10.1007/s10565-016-9316-2
    Wu Y., Geng X.-C., Wang J.-F., Miao Y.-F., Lu Y.-L., Li B.
    The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury.
    Cell Biol. Toxicol. 32:37-59(2016)

    PubMed=27329724; DOI=10.18632/oncotarget.10161; PMCID=PMC5216950
    Watari K., Nishitani A., Shibata T., Noda M., Kawahara A., Akiba J., Murakami Y., Yano H., Kuwano M., Ono M.
    Phosphorylation of mTOR Ser2481 is a key target limiting the efficacy of rapalogs for treating hepatocellular carcinoma.
    Oncotarget 7:47403-47417(2016)

    PubMed=27470094; DOI=10.1016/j.chroma.2016.07.042
    Liu Z.-Y., Wang F.-J., Chen J., Zhou Y., Zou H.-F.
    Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy.
    J. Chromatogr. A 1461:35-41(2016)

    PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
    Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
    Characterization of human cancer cell lines by reverse-phase protein arrays.
    Cancer Cell 31:225-239(2017)

    PubMed=29610054; DOI=10.1016/j.dmpk.2018.03.003; PMCID=PMC6309175
    Shi J., Wang X.-W., Lyu L.-Y., Jiang H., Zhu H.-J.
    Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes.
    Drug Metab. Pharmacokinet. 33:133-140(2018)

    PubMed=29660373; DOI=10.1016/j.bbagen.2018.04.012
    Touat-Hamici Z., Bulteau A.-L., Bianga J., Jean-Jacques H., Szpunar J., Lobinski R., Chavatte L.
    Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.
    Biochim. Biophys. Acta 1862:2493-2505(2018)

    PubMed=30629668; DOI=10.1371/journal.pone.0210404; PMCID=PMC6328144
    Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.
    Screening human cell lines for viral infections applying RNA-Seq data analysis.
    PLoS ONE 14:E0210404-E0210404(2019)

    PubMed=30864654; DOI=10.1093/nar/gkz169; PMCID=PMC6486628
    Zhou B., Ho S.S., Greer S.U., Spies N., Bell J.M., Zhang X.-L., Zhu X.-W., Arthur J.G., Byeon S., Pattni R., Saha I., Huang Y.-L., Song G., Perrin D., Wong W.H., Ji H.P., Abyzov A., Urban A.E.
    Haplotype-resolved and integrated genome analysis of the cancer cell line HepG2.
    Nucleic Acids Res. 47:3846-3861(2019)

    PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
    Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
    An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
    Cancer Res. 79:1263-1273(2019)

    PubMed=31063779; DOI=10.1053/j.gastro.2019.05.001
    Caruso S., Calatayud A.-L., Pilet J., La Bella T., Rekik S., Imbeaud S., Letouze E., Meunier L., Bayard Q., Rohr-Udilova N., Peneau C., Grasl-Kraupp B., de Koning L., Ouine B., Bioulac-Sage P., Couchy G., Calderaro J., Nault J.-C., Zucman-Rossi J., Rebouissou S.
    Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response.
    Gastroenterology 157:760-776(2019)

    PubMed=31068700; DOI=10.1038/s41586-019-1186-3; PMCID=PMC6697103
    Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. 3rd, Barretina J.G., Gelfand E.T., Bielski C.M., Li H.-X., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y.-L., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
    Next-generation characterization of the Cancer Cell Line Encyclopedia.
    Nature 569:503-508(2019)

    PubMed=31378681; DOI=10.1016/j.ccell.2019.07.001; PMCID=PMC7505724
    Qiu Z.-X., Li H., Zhang Z.-T., Zhu Z.-F., He S., Wang X.-J., Wang P.-C., Qin J.-J., Zhuang L.-P., Wang W., Xie F.-B., Gu Y., Zou K.-K., Li C., Li C., Wang C.-H., Cen J., Chen X.-T., Shu Y.-J., Zhang Z., Sun L.-L., Min L.-H., Fu Y., Huang X.-W., Lv H., Zhou H., Ji Y., Zhang Z.-G., Meng Z.-Q., Shi X.-L., Zhang H.-B., Li Y.-X., Hui L.-J.
    A pharmacogenomic landscape in human liver cancers.
    Cancer Cell 36:179-193.e11(2019)

    PubMed=31395879; DOI=10.1038/s41467-019-11415-2; PMCID=PMC6687785
    Yu K., Chen B., Aran D., Charalel J., Yau C., Wolf D.M., van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.
    Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.
    Nat. Commun. 10:3574.1-3574.11(2019)

    PubMed=31561354; DOI=10.3233/CH-199226; PMCID=PMC6918903
    Schulz C., Kammerer S., Kupper J.-H.
    NADPH-cytochrome P450 reductase expression and enzymatic activity in primary-like human hepatocytes and HepG2 cells for in vitro biotransformation studies.
    Clin. Hemorheol. Microcirc. 73:249-260(2019)

    PubMed=31978347; DOI=10.1016/j.cell.2019.12.023; PMCID=PMC7339254
    Nusinow D.P., Szpyt J., Ghandi M., Rose C.M., McDonald E.R. 3rd, Kalocsay M., Jane-Valbuena J., Gelfand E.T., Schweppe D.K., Jedrychowski M.P., Golji J., Porter D.A., Rejtar T., Wang Y.K., Kryukov G.V., Stegmeier F., Erickson B.K., Garraway L.A., Sellers W.R., Gygi S.P.
    Quantitative proteomics of the Cancer Cell Line Encyclopedia.
    Cell 180:387-402.e16(2020)"

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献
    "Patent=US4393133
    Knowles B.B., Aden D.P.
    Human hepatoma derived cell line, process for preparation thereof, and uses therefor.
    Patent number US4393133, 12-Jul-1983

    PubMed=2439335; DOI=10.1111/j.1432-1033.1987.tb11497.x
    Vincent C., Marceau M., Blangarin P., Bouic P., Madjar J.-J., Revillard J.-P.
    Purification of alpha 1-microglobulin produced by human hepatoma cell lines. Biochemical characterization and comparison with alpha 1-microglobulin synthesized by human hepatocytes.
    Eur. J. Biochem. 165:699-704(1987)

    PubMed=8224613; DOI=10.1096/fasebj.7.14.8224613
    Puisieux A., Galvin K., Troalen F., Bressac B., Marcais C., Galun E., Ponchel F., Yakicier C., Ji J.-W., Ozturk M.
    Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines.
    FASEB J. 7:1407-1413(1993)

    PubMed=8384076; DOI=10.1016/0165-4608(93)90227-D
    Chen H.-L., Chiu T.-S., Chen P.-J., Chen D.-S.
    Cytogenetic studies on human liver cancer cell lines.
    Cancer Genet. Cytogenet. 65:161-166(1993)

    PubMed=8389256; DOI=10.1093/carcin/14.5.987
    Hsu I.-C., Tokiwa T., Bennett W.P., Metcalf R.A., Welsh J.A., Sun T.-T., Harris C.C.
    p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines.
    Carcinogenesis 14:987-992(1993)

    PubMed=7972006; DOI=10.1073/pnas.91.23.11045; PMCID=PMC45163
    Okamoto A., Demetrick D.J., Spillare E.A., Hagiwara K., Hussain S.P., Bennett W.P., Forrester K., Gerwin B.I., Serrano M., Beach D.H., Harris C.C.
    Mutations and altered expression of p16INK4 in human cancer.
    Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994)

    PubMed=8050184; DOI=10.1111/j.1365-2249.1994.tb06089.x; PMCID=PMC1534706
    Wadee A.A., Paterson A., Coplan K.A., Reddy S.G.
    HLA expression in hepatocellular carcinoma cell lines.
    Clin. Exp. Immunol. 97:328-333(1994)

    PubMed=8835345; DOI=10.1002/(SICI)1096-9071(199602)48:2<133::AID-JMV3>3.0.CO;2-A
    Tsuboi S., Nagamori S., Miyazaki M., Mihara K., Fukaya K.-i., Teruya K., Kosaka T., Tsuji T., Namba M.
    Persistence of hepatitis C virus RNA in established human hepatocellular carcinoma cell lines.
    J. Med. Virol. 48:133-140(1996)

    DOI=10.11418/jtca1981.16.3_173
    Mihara K., Miyazaki M., Fushimi K., Tsuji T., Inoue Y., Fukaya K.-i., Ohashi R., Namba M.
    The p53 gene status and other cellular characteristics of human cell lines maintained in our laboratory.
    Tissue Cult. Res. Commun. 16:173-178(1997)

    PubMed=9178645; DOI=10.1006/cimm.1997.1108
    Nakao M., Sata M., Saitsu H., Yutani S., Kawamoto M., Kojiro M., Itoh K.
    CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.
    Cell. Immunol. 177:176-181(1997)

    PubMed=9359923; DOI=10.18926/AMO/30789
    Mihara K., Miyazaki M., Kondo T., Fushimi K., Tsuji T., Inoue Y., Fukaya K.-i., Ishioka C., Namba M.
    Yeast functional assay of the p53 gene status in human cell lines maintained in our laboratory.
    Acta Med. Okayama 51:261-265(1997)

    PubMed=11050057; DOI=10.1053/jhep.2000.19349
    Wong N., Lai P.B.-S., Pang E., Leung T.W.-T., Lau J.W.-Y., Johnson P.J.
    A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping.
    Hepatology 32:1060-1068(2000)

    PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459
    Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
    Short tandem repeat profiling provides an international reference standard for human cell lines.
    Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)

    PubMed=11981770; DOI=10.1053/jhep.2002.32668
    Clemens D.L., Forman A., Jerrells T.R., Sorrell M.F., Tuma D.J.
    Relationship between acetaldehyde levels and cell survival in ethanol-metabolizing hepatoma cells.
    Hepatology 35:1196-1204(2002)

    PubMed=12029633; DOI=10.1053/jhep.2002.33683
    Yasui K., Arii S., Zhao C., Imoto I., Ueda M., Nagai H., Emi M., Inazawa J.
    TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas.
    Hepatology 35:1476-1484(2002)

    PubMed=12068308; DOI=10.1038/nature00766
    Davies H.R., Bignell G.R., Cox C., Stephens P.J., Edkins S., Clegg S., Teague J.W., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C.S., Shipley J.M., Hargrave D., Pritchard-Jones K., Maitland N.J., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A.M., Nicholson A., Ho J.W.C., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H.F., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.
    Mutations of the BRAF gene in human cancer.
    Nature 417:949-954(2002)

    DOI=10.1385/CP:1:3-4:313
    Pang R.T.-K., Poon T.C.-W., Wong N., Lai P.B.-S., Wong N.L.-Y., Chan C.M.-L., Yu J.W.S., Chan A.T.-C., Sung J.J.-Y.
    Comparison of protein expression patterns between hepatocellular carcinoma cell lines and a hepatoblastoma cell line.
    Clin. Proteomics 1:313-331(2004)

    PubMed=14980111
    Zhai B.-J., Wu F., Shao Z.-Y., Hu K., Zhao C.-L., Wang Z.-B.
    Establishment of human hepatocellular carcinoma multidrug-resistance cell line (HepG2/Adm) and study apoptosis induced by low-frequency pulse ultrasound exposure.
    Zhonghua Gan Zang Bing Za Zhi 12:95-98(2004)

    PubMed=15767549; DOI=10.1158/1535-7163.MCT-04-0234
    Nakatsu N., Yoshida Y., Yamazaki K., Nakamura T., Dan S., Fukui Y., Yamori T.
    Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.
    Mol. Cancer Ther. 4:399-412(2005)

    PubMed=16181800; DOI=10.1016/j.biocel.2005.07.010
    Donohue T.M., Osna N.A., Clemens D.L.
    Recombinant Hep G2 cells that express alcohol dehydrogenase and cytochrome P450 2E1 as a model of ethanol-elicited cytotoxicity.
    Int. J. Biochem. Cell Biol. 38:92-101(2006)

    PubMed=16935386; DOI=10.1016/j.jhep.2006.05.019
    Sun D.-X., Nassal M.
    Stable HepG2- and Huh7-based human hepatoma cell lines for efficient regulated expression of infectious hepatitis B virus.
    J. Hepatol. 45:636-645(2006)

    PubMed=17254797; DOI=10.1016/j.biologicals.2006.10.001
    Azari S., Ahmadi N., Jeddi-Tehrani M., Shokri F.
    Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran.
    Biologicals 35:195-202(2007)

    PubMed=19215227; DOI=10.1111/j.1349-7006.2009.01082.x; PMCID=PMC11158180
    Kuwahara Y., Li L., Baba T., Nakagawa H., Shimura T., Yamamoto Y., Ohkubo Y., Fukumoto M.
    Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays.
    Cancer Sci. 100:747-752(2009)

    PubMed=19751877; DOI=10.1016/j.humpath.2009.07.003
    Lopez-Terrada D.H., Cheung S.-W., Finegold M.J., Knowles B.B.
    Hep G2 is a hepatoblastoma-derived cell line.
    Hum. Pathol. 40:1512-1515(2009)

    PubMed=20069059; DOI=10.1155/2010/437143; PMCID=PMC2801507
    Srisomsap C., Sawangareetrakul P., Subhasitanont P., Chokchaichamnankit D., Chiablaem K., Bhudhisawasdi V., Wongkham S., Svasti J.
    Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes.
    J. Biomed. Biotechnol. 2010:437143.1-437143.18(2010)

    PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
    Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
    A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
    Cancer Res. 70:2158-2164(2010)

    PubMed=20228232; DOI=10.1124/dmd.109.031831; PMCID=PMC2879958
    Hart S.N., Li Y., Nakamoto K., Subileau E.-A., Steen D., Zhong X.-B.
    A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues.
    Drug Metab. Dispos. 38:988-994(2010)

    PubMed=20937217; DOI=10.1170/149
    Di Masi A., Viganotti M., Antoccia A., Magrelli A., Salvatore M., Azzalin G., Tosto F., Lorenzetti S., Maranghi F., Mantovani A., Macino G., Tanzarella C., Taruscio D.
    Characterization of HuH6, Hep3B, HepG2 and HLE liver cancer cell lines by WNT/beta-catenin pathway, microRNA expression and protein expression profile.
    Cell. Mol. Biol. 56:OL1299-OL1317(2010)

    PubMed=21269460; DOI=10.1186/1752-0509-5-17; PMCID=PMC3039570
    Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Burckstummer T., Bennett K.L., Superti-Furga G., Colinge J.
    Initial characterization of the human central proteome.
    BMC Syst. Biol. 5:17.1-17.13(2011)

    PubMed=22278370; DOI=10.1074/mcp.M111.014050; PMCID=PMC3316730
    Geiger T., Wehner A., Schaab C., Cox J., Mann M.
    Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.
    Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=23325432; DOI=10.1101/gr.147942.112; PMCID=PMC3589544
    Varley K.E., Gertz J., Bowling K.M., Parker S.L., Reddy T.E., Pauli-Behn F., Cross M.K., Williams B.A., Stamatoyannopoulos J.A., Crawford G.E., Absher D.M., Wold B.J., Myers R.M.
    Dynamic DNA methylation across diverse human cell lines and tissues.
    Genome Res. 23:555-567(2013)

    PubMed=23505090; DOI=10.1002/hep.26402
    Wang K., Lim H.Y., Shi S., Lee J., Deng S.-B., Xie T., Zhu Z., Wang Y.-L., Pocalyko D., Yang W.J., Rejto P.A., Mao M., Park C.-K., Xu J.-C.
    Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.
    Hepatology 58:706-717(2013)

    PubMed=23887712; DOI=10.1038/ncomms3218; PMCID=PMC3731665
    Nault J.-C., Mallet M., Pilati C., Calderaro J., Bioulac-Sage P., Laurent C., Laurent A., Cherqui D., Balabaud C., Zucman-Rossi J.
    High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions.
    Nat. Commun. 4:2218.1-2218.7(2013)

    PubMed=24116068; DOI=10.1371/journal.pone.0075692; PMCID=PMC3792989
    Weiskirchen R., Weimer J., Meurer S.K., Kron A., Seipel B., Vater I., Arnold N., Siebert R., Xu L.-M., Friedman S.L., Bergmann C.
    Genetic characteristics of the human hepatic stellate cell line LX-2.
    PLoS ONE 8:E75692-E75692(2013)

    PubMed=24618588; DOI=10.1371/journal.pone.0091433; PMCID=PMC3950186
    Chernobrovkin A.L., Zubarev R.A.
    Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.
    PLoS ONE 9:E91433-E91433(2014)

    PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
    Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
    A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
    OncoImmunology 3:e954893.1-e954893.12(2014)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25574106; DOI=10.3748/wjg.v21.i1.311; PMCID=PMC4284350
    Cevik D., Yildiz G., Ozturk M.
    Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations.
    World J. Gastroenterol. 21:311-317(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=26160117; DOI=10.1093/toxsci/kfv136; PMCID=PMC4583060
    Sison-Young R.L.C., Mitsa D., Jenkins R.E., Mottram D., Alexandre E., Richert L., Aerts H., Weaver R.J., Jones R.P., Johann E., Hewitt P.G., Ingelman-Sundberg M., Goldring C.E.P., Kitteringham N.R., Park B.K.
    Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication.
    Toxicol. Sci. 147:412-424(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=26825538; DOI=10.1016/j.jprot.2016.01.016
    Wisniewski J.R., Vildhede A., Noren A., Artursson P.
    In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes.
    J. Proteomics 136:234-247(2016)

    PubMed=27027780; DOI=10.1007/s10565-016-9316-2
    Wu Y., Geng X.-C., Wang J.-F., Miao Y.-F., Lu Y.-L., Li B.
    The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury.
    Cell Biol. Toxicol. 32:37-59(2016)

    PubMed=27329724; DOI=10.18632/oncotarget.10161; PMCID=PMC5216950
    Watari K., Nishitani A., Shibata T., Noda M., Kawahara A., Akiba J., Murakami Y., Yano H., Kuwano M., Ono M.
    Phosphorylation of mTOR Ser2481 is a key target limiting the efficacy of rapalogs for treating hepatocellular carcinoma.
    Oncotarget 7:47403-47417(2016)

    PubMed=27470094; DOI=10.1016/j.chroma.2016.07.042
    Liu Z.-Y., Wang F.-J., Chen J., Zhou Y., Zou H.-F.
    Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy.
    J. Chromatogr. A 1461:35-41(2016)

    PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
    Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
    Characterization of human cancer cell lines by reverse-phase protein arrays.
    Cancer Cell 31:225-239(2017)

    PubMed=29610054; DOI=10.1016/j.dmpk.2018.03.003; PMCID=PMC6309175
    Shi J., Wang X.-W., Lyu L.-Y., Jiang H., Zhu H.-J.
    Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes.
    Drug Metab. Pharmacokinet. 33:133-140(2018)

    PubMed=29660373; DOI=10.1016/j.bbagen.2018.04.012
    Touat-Hamici Z., Bulteau A.-L., Bianga J., Jean-Jacques H., Szpunar J., Lobinski R., Chavatte L.
    Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.
    Biochim. Biophys. Acta 1862:2493-2505(2018)

    PubMed=30629668; DOI=10.1371/journal.pone.0210404; PMCID=PMC6328144
    Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.
    Screening human cell lines for viral infections applying RNA-Seq data analysis.
    PLoS ONE 14:E0210404-E0210404(2019)

    PubMed=30864654; DOI=10.1093/nar/gkz169; PMCID=PMC6486628
    Zhou B., Ho S.S., Greer S.U., Spies N., Bell J.M., Zhang X.-L., Zhu X.-W., Arthur J.G., Byeon S., Pattni R., Saha I., Huang Y.-L., Song G., Perrin D., Wong W.H., Ji H.P., Abyzov A., Urban A.E.
    Haplotype-resolved and integrated genome analysis of the cancer cell line HepG2.
    Nucleic Acids Res. 47:3846-3861(2019)

    PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
    Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
    An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
    Cancer Res. 79:1263-1273(2019)

    PubMed=31063779; DOI=10.1053/j.gastro.2019.05.001
    Caruso S., Calatayud A.-L., Pilet J., La Bella T., Rekik S., Imbeaud S., Letouze E., Meunier L., Bayard Q., Rohr-Udilova N., Peneau C., Grasl-Kraupp B., de Koning L., Ouine B., Bioulac-Sage P., Couchy G., Calderaro J., Nault J.-C., Zucman-Rossi J., Rebouissou S.
    Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response.
    Gastroenterology 157:760-776(2019)

    PubMed=31068700; DOI=10.1038/s41586-019-1186-3; PMCID=PMC6697103
    Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. 3rd, Barretina J.G., Gelfand E.T., Bielski C.M., Li H.-X., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y.-L., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
    Next-generation characterization of the Cancer Cell Line Encyclopedia.
    Nature 569:503-508(2019)

    PubMed=31378681; DOI=10.1016/j.ccell.2019.07.001; PMCID=PMC7505724
    Qiu Z.-X., Li H., Zhang Z.-T., Zhu Z.-F., He S., Wang X.-J., Wang P.-C., Qin J.-J., Zhuang L.-P., Wang W., Xie F.-B., Gu Y., Zou K.-K., Li C., Li C., Wang C.-H., Cen J., Chen X.-T., Shu Y.-J., Zhang Z., Sun L.-L., Min L.-H., Fu Y., Huang X.-W., Lv H., Zhou H., Ji Y., Zhang Z.-G., Meng Z.-Q., Shi X.-L., Zhang H.-B., Li Y.-X., Hui L.-J.
    A pharmacogenomic landscape in human liver cancers.
    Cancer Cell 36:179-193.e11(2019)

    PubMed=31395879; DOI=10.1038/s41467-019-11415-2; PMCID=PMC6687785
    Yu K., Chen B., Aran D., Charalel J., Yau C., Wolf D.M., van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.
    Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.
    Nat. Commun. 10:3574.1-3574.11(2019)

    PubMed=31561354; DOI=10.3233/CH-199226; PMCID=PMC6918903
    Schulz C., Kammerer S., Kupper J.-H.
    NADPH-cytochrome P450 reductase expression and enzymatic activity in primary-like human hepatocytes and HepG2 cells for in vitro biotransformation studies.
    Clin. Hemorheol. Microcirc. 73:249-260(2019)

    PubMed=31978347; DOI=10.1016/j.cell.2019.12.023; PMCID=PMC7339254
    Nusinow D.P., Szpyt J., Ghandi M., Rose C.M., McDonald E.R. 3rd, Kalocsay M., Jane-Valbuena J., Gelfand E.T., Schweppe D.K., Jedrychowski M.P., Golji J., Porter D.A., Rejtar T., Wang Y.K., Kryukov G.V., Stegmeier F., Erickson B.K., Garraway L.A., Sellers W.R., Gygi S.P.
    Quantitative proteomics of the Cancer Cell Line Encyclopedia.
    Cell 180:387-402.e16(2020)"
    图标技术资料

    需要更多技术资料 索取更多技术资料

    资料下载:

    产品(54).jpg 附 (下载 0 次)

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥850
    上海冠导生物工程有限公司
    2025年07月15日询价
    询价
    上海哈灵生物科技有限公司
    2025年09月02日询价
    ¥1280
    上海泽叶生物科技有限公司
    2025年07月11日询价
    ¥1500
    无锡欣润生物科技有限公司
    2025年11月14日询价
    ¥800
    上海抚生实业有限公司
    2025年07月13日询价
    文献支持
    Hep G2人肝癌传代细胞活性强|送STR图谱
    ¥850 - 2150