RT4人膀胱移行细胞乳头瘤传代细胞长期复苏|送STR图谱
文献支持

RT4人膀胱移行细胞乳头瘤传代细胞长期复苏|送STR图谱

收藏
  • ¥850 - 2150
  • 冠导生物
  • RT4人膀胱移行细胞乳头瘤传代细胞长期复苏|送STR图谱
  • 美国、德国、欧洲等
  • 2025年07月11日
    avatar
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 文献和实验
    • 技术资料
    • 品系

      详见细胞说明资料

    • 细胞类型

      详见细胞说明资料

    • 肿瘤类型

      详见细胞说明资料

    • 供应商

      上海冠导生物工程有限公司

    • 库存

      ≥100瓶

    • 生长状态

      详见细胞说明资料

    • 年限

      详见细胞说明资料

    • 运输方式

      常温运输【复苏细胞】或干冰运输【冻存细胞】

    • 器官来源

      详见细胞说明资料

    • 是否是肿瘤细胞

      详见细胞说明资料

    • 细胞形态

      详见细胞说明资料

    • 免疫类型

      详见细胞说明资料

    • 物种来源

      详见细胞说明资料

    • 相关疾病

      详见细胞说明资料

    • 组织来源

      详见细胞说明资料

    • 英文名

      RT4人膀胱移行细胞乳头瘤传代细胞长期复苏|送STR图谱

    • 规格

      1*10(6)Cellls/瓶

    "RT4人膀胱移行细胞乳头瘤传代细胞长期复苏|送STR图谱
    传代方法:1:2-1:4(首次传代建议1:2)
    生长特性:贴壁生长
    换液频率:每周2-3次
    背景资料:详见相关文献介绍
    在细胞传代过程中,离心操作后的上清液处理是一个关键步骤,而关于是用移液枪吸走还是直接倒掉上清液,需要综合多方面因素来考量。使用移液枪吸走上清液具有一定的优势。移液枪能够较为精准地控制吸取的量和速度,可以地减少对细胞沉淀的扰动。可以根据实际情况尽可能地吸净上清液,减少残留血清或培养基成分对后续细胞培养的潜在影响,比如残留的血清可能会改变新培养基的营养成分比例或带来一些未知的生长因子干扰。然而,直接倒掉上清液也并非不可行。在处理一些细胞数量较多、细胞耐受性较好且对实验精度要求并非极高的细胞传代时,直接倒掉上清液能够提高操作效率,节省时间。但这种方式存在一定风险,直接倾倒时较难控制力度和角度,如果操作不慎,容易使细胞沉淀随着上清液一起流出,导致细胞损失,而且可能会因液体快速流下冲击细胞沉淀造成细胞的物理性损伤。在实际的细胞传代操作中,应根据细胞的特性、实验的要求以及个人的操作熟练程度来选择合适的上清液处理方式。对于新手或者处理珍贵细胞系时,建议优先采用移液枪吸走的方式,以保障细胞的活性和传代的成功率。而在积累了丰富经验且对实验条件有充分把握的情况下,可以根据具体情况灵活运用直接倒掉上清液的方法,在保证实验质量的同时提高工作效率。
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    GENEA055 Cells(拥有STR基因鉴定图谱)
    HMCB Cells;背景说明:详见相关文献介绍;传代方法:1:6—1:10传代,2天换液1次;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:Madin-Darby Bovine Kidney Cells、MDCKII-WT Cells、NPC-TW 01 Cells
    SK 1 Cells;背景说明:详见相关文献介绍;传代方法:维持细胞浓度在1×105-2×105,每周补液2-3次。;生长特性:悬浮生长;形态特性:球形的;相关产品有:Colo-206F Cells、SW 756 Cells、Hep 3B2 Cells
    RT4人膀胱移行细胞乳头瘤传代细胞长期复苏|送STR图谱
    产品包装形式:复苏细胞:T25培养瓶(一瓶)或冻存细胞:1ml冻存管(两支)
    来源说明:细胞主要来源ATCC、DSMZ等细胞库
    在细胞培养过程中会出现这样或那样的问题,客户遇到的问题从细胞生长角度来说,针对细胞培养过程中生长不HAO、甚至死亡的原因,我们做以下分析并提出相对应的解决方法。一、培养细胞生长不HAO》可能原因:细胞本身的状态》1)细胞传代次数多,细胞老化;2)细胞的接种量:接种量过低,细胞生长缓慢;3)细胞传代时间过晚:细胞中毒,影响传代后的细胞生长;4)胰酶消化时间过长或过短:时间过长,细胞死亡;时间过短,细胞未完全分离而成团,细胞死亡;5)细胞的冻存与复苏:慢冻速融。污染:1)支原体污染;2)霉菌污染;培养基或血清:1)更换血清或培养基之前未进行验证;2)选择的培养基是否合适;3)培养基配制是否准确无误;培养环境:1)CO2供应是否正常;2)培养箱或摇床温度控制是否正确;解决方法:根据以上四个方面的可能原因,做出针对性的解决方案》1)注意细胞的本身状态:如传代次数、接种量等;2)避免产生污染(用正规、合法、可溯源的血清);3)要用合适的血清或培养基,ZuiHAO经过验证;4)注意实验室的环境;二、培养细胞死亡》可能原因:1)培养箱内无CO2;2)培养箱内温度波动太大;3)细胞冻存或复苏过程中损伤;4)培养渗透压不正确;5)培养中有毒代谢产物堆积;解决方法:1)检测培养箱内CO2;2)检查培养箱内温度;3)取新的保存细胞种;4)检测培养渗透压;5)换入新鲜培养。
    物种来源:Human\Mouse\Rat\Others
    H87 Cells;背景说明:NCI-N87细胞表达表面糖蛋白癌胚抗原(CEA)和TAG72,并且没有左旋多巴胺脱羧酶(DDC)活性。它们的血管活性的肠肽(VIP)受体活性极低并缺乏胃泌激素受体。它们表达蕈毒碱胆碱受体。没有证据表明存在N-myc,L-myc,myb和EGF受体基因的重组。这个细胞株表达的c-myc和c-erb-B2RNA水平与其它细胞株相当。以下基因不表达:N-myc,L-myc,c-cis,IGF-2,或胃泌激素释放肽。报道NCI-N87细胞的植板率为4.3%。;传代方法:消化15-20分钟。1:2。4-5天长满。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:LNCaP-ATCC Cells、HEK293F Cells、RC-2 Cells
    MDA.MB.231 Cells;背景说明:MDA-MB-231来自患有转移乳腺腺癌的51岁女病人的胸水。在裸鼠和ALS处理的BALB/c小鼠中,它能形成低分化腺癌(III级)。;传代方法:消化3-5分钟,1:2,3天内可长满;生长特性:贴壁生长;形态特性:上皮样;相关产品有:PANC 203 Cells、VP267 Cells、KY70 Cells
    MDA-1386 Cells;背景说明:舌鳞癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:786-0 Cells、VMM-5A Cells、SK BR 03 Cells
    RT4人膀胱移行细胞乳头瘤传代细胞长期复苏|送STR图谱
    形态特性:上皮细胞样
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    ATCC细胞库(American Type Culture Colection),该中心一直致力于细胞分类、鉴定和保藏工作。ATCC是全球最大的生物资源保藏中心,ATCC通过行业标准产品、服务和创新解决方案支持全球学术、政府、生物技术、制药、食品、农业和工业领域的科学进步。ATCC提供的服务和定制解决方案包括细胞和微生物培养、鉴定、生物衍生物的开发和生产、性能测试和生物资源保藏服务。美国国家标准协会(ANSI)认可了ATCC标准开发组织,并制定了标准协议,以确保生物材料的可靠性和可重复性。ATCC的使命是为了获取、鉴定、保存、开发、标准化和分发生物资源和生物信息,以提高和应用生物科学知识。
    OCI-LY-18 Cells;背景说明:弥漫大B细胞淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:ROS17/2.8 Cells、MCA38 Cells、HCC-9724 Cells
    NE-4C Cells;背景说明:神经干 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:PK-136 Cells、rRMECs Cells、NuTu-19 Cells
    RL-95-2 Cells;背景说明:这些细胞有α角蛋白,定义明确的连接复合体,张力丝和表面微绒毛。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:SK-ES-1 Cells、Y3-Ag123 Cells、SUDHL2 Cells
    DK-MG Cells;背景说明:胶质母细胞瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:CAL-12T Cells、NRCC Cells、OCI-LY-18 Cells
    CBRH-7919 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:MH-S Cells、J774A.1 Cells、BT20 Cells
    L-6TG Cells;背景说明:肌母 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:P-2003 Cells、A875 Cells、GS-9L Cells
    Natural Killer-92 Cells;背景说明:NK细胞;淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:BrCL15 Cells、BEL7405 Cells、H-865 Cells
    VA-ES-BJ Cells;背景说明:详见相关文献介绍;传代方法:1:3传代,每周2次;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:SK-Col-1 Cells、SW480 Cells、H.Ep. No. 2 Cells
    H865 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HEK 293FT Cells、B16F0 Cells、R-1059-D Cells
    RAW264.7 Cells;背景说明:单核巨噬细胞白血病;雄性;BALB/c;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SK MEL 5 Cells、U-266 Cells、Panc02-H0 Cells
    Tn-5B1-4 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:OSC-19 Cells、MNNG-HOS Cells、HL-60 Clone 15 Cells
    U-373MG Cells;背景说明:胶质瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Astrocyte type I clone Cells、FU-97 Cells、DoTc2 4510 Cells
    H-441 Cells;背景说明:NCI-H441建系于1982年(A.F.Gazdar,etal.)。该细胞分离自一名肺腺癌患者的心包液。该细胞能在半固体琼脂糖中形成克隆,并能表达肺泡表面活性蛋白A。该细胞在有血清培养基中倍增时间为58小时,在无血清培养基中倍增时间为99-138小时。;传代方法:1:3传代,2-3天传一代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:769-P Cells、OVCAR 5 Cells、SUM-190PT Cells
    MDCK-2 Cells;背景说明:详见相关文献介绍;传代方法:1:3传代,3-4天传1次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:Ku812F Cells、HS578T Cells、Swiss/3T3 Cells
    GM03671 Cells;背景说明:G.E. Foley 等人建立了类淋巴母细胞细胞株CCRF-CEM。 细胞是1964年11月从一位四岁白人女性急性淋巴细胞白血病患者的外周血白血球衣中得到。此细胞系从香港收集而来。;传代方法:1:2传代。3天内可长满。;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:TE-3A Cells、NCI-H295R Cells、E304 Cells
    NCI-SNU-C2B Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:X63-Ag8 Cells、SUM 52 Cells、GL261 Cells
    hESC Cells;背景说明:子宫内膜;间质细胞;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:BCAP37 Cells、TE12 Cells、174xCEM.T2 Cells
    1BR3-hTERT PBRM1 KO 5 + PBRM1 Cells(拥有STR基因鉴定图谱)
    Abcam HeLa MMP24 KO Cells(拥有STR基因鉴定图谱)
    AG24115 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line RRG177 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line XG914 Cells(拥有STR基因鉴定图谱)
    C0872 Cells(拥有STR基因鉴定图谱)
    CW80025 Cells(拥有STR基因鉴定图谱)
    DA05322 Cells(拥有STR基因鉴定图谱)
    H322T Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:H676B Cells、MV-522 Cells、U138MG Cells
    138MG Cells;背景说明:星形细胞瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:TYKnu Cells、HEK293-EBNA1 Cells、DrG Cells
    RT4人膀胱移行细胞乳头瘤传代细胞长期复苏|送STR图谱
    F-81 Cells;背景说明:肾;自发永生;雌性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:BIC Cells、WM266 Cells、X63 Cells
    Hs-688A-T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:LNCaP.FGC Cells、ANA1 Cells、HTR-8/SV-neo Cells
    PNT1/A Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HCC-1599 Cells、Hs729T Cells、NRK-49F Cells
    OCI-LY-18 Cells;背景说明:弥漫大B细胞淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:ROS17/2.8 Cells、MCA38 Cells、HCC-9724 Cells
    Hep 3B2.1-7 Cells;背景说明:肝癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MDAMB134 Cells、LAPC4 Cells、BT-325 Cells
    639 V Cells;背景说明:膀胱癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:CD18 Cells、V-79-4 Cells、FCCH1024 Cells
    1B3 [Mouse hybridoma against aconitine-type alkaloids] Cells(拥有STR基因鉴定图谱)
    HOS-MNNG Cells;背景说明:骨肉瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:GB1 Cells、HUC Cells、H187 Cells
    ECV-304 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:National Medical Center-Glioma 1 Cells、F56 [Human neoplasm] Cells、SDBMSC Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    COLO 679 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:CAOV4 Cells、BHK 21 Cells、NCIH2066 Cells
    MDAMB330 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Sarcoma OSteogenic-2 Cells、OsA-CL Cells、MADISON LUNG TA-109 Cells
    Rainbow Trout Embryo Cells;背景说明:详见相关文献介绍;传代方法:1:3传代,3-4天换液一次;生长特性:贴壁生长;形态特性:多角;相关产品有:SupB15W Cells、BOWES Cells、TOG Cells
    QGP1 Cells;背景说明:胰腺癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NCI-H220 Cells、MT-2J Cells、LS-180 Cells
    Calu 3 Cells;背景说明:该细胞是从一名25岁的白人男性肺腺癌患者的胸水中分离建立的;该患者曾使用过环磷酰胺、博来霉素、阿霉素进行治疗。该细胞接种至裸鼠可成瘤;可作转染宿主。;传代方法:消化20分钟。1:2。5-6天长满。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:MV-1-Lu Cells、SW780 Cells、RT4-D6-P2T Cells
    SKNF1 Cells;背景说明:详见相关文献介绍;传代方法:1:4传代,每周换液2次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HAC-84 Cells、SNU638 Cells、AtT-20 Cells
    GM10266 Cells(拥有STR基因鉴定图谱)
    HAP1 CACNB3 (-) 2 Cells(拥有STR基因鉴定图谱)
    NCI-H1341 Cells;背景说明:详见相关文献介绍;传代方法:3-4天换液1次。;生长特性:悬浮生长;形态特性:圆形细胞;相关产品有:SNU-407 Cells、Case 3 Cells、Dysplastic Oral Keratinocyte Cells
    WM115 Cells;背景说明:黑色素瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NE1 Cells、SN12PM6 Cells、Jurkat FHCRC Cells
    U-138MG Cells;背景说明:星形细胞瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NS-20Y Cells、PC-9S1 Cells、HFTF Cells
    NCI-H2066 Cells;背景说明:详见相关文献介绍;传代方法:每周换液2-3次;生长特性:悬浮生长;形态特性:聚团悬浮;相关产品有:Panc_08_13 Cells、Hs606T Cells、3T3 Cells
    FRhK4 Cells;背景说明:胚胎;肾;自发永生;雌性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NCIH508 Cells、CCLP-1 Cells、Tn 5B1-4 Cells
    CEM-CCRF (CAMR) Cells;背景说明:G.E. Foley 等人建立了类淋巴母细胞细胞株CCRF-CEM。 细胞是1964年11月从一位四岁白人女性急性淋巴细胞白血病患者的外周血白血球衣中得到。此细胞系从香港收集而来。;传代方法:1:2传代。3天内可长满。;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:H-358 Cells、SKM-1 Cells、Epstein-Barr-3 Cells
    451Lu Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:NS1-1 Ag4.1 Cells、RPMI No. 1846 Cells、HCa/16A3-F Cells
    TEC Cells;背景说明:胸腺;上皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:BNL.CL2 Cells、SK Mel 2 Cells、LM3 Cells
    HG03679 Cells(拥有STR基因鉴定图谱)
    Ig1.Sk/mu Cells(拥有STR基因鉴定图谱)
    LS174T/R Cells(拥有STR基因鉴定图谱)
    NCM460D Cells(拥有STR基因鉴定图谱)
    PBMC iPSC #1 Cells(拥有STR基因鉴定图谱)
    Ubigene H9c2(2-1) Glp1r KO Cells(拥有STR基因鉴定图谱)
    Vero-pA104R Cells(拥有STR基因鉴定图谱)
    HAP1 TGFBR2 (-) 7 Cells(拥有STR基因鉴定图谱)
    H-2087 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代;每周换液2次。;生长特性:悬浮生长,有少数细胞疏松贴壁;形态特性:上皮样;相关产品有:PL-12 Cells、NIH/3T3 Cells、MDA-MB-453 Cells
    EFM192A Cells;背景说明:乳腺癌;胸腔积液转移;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:X63-Ag8-653 Cells、HSC(Human Schwann) Cells、SU-DHL-8 Cells
    AN3CA Cells;背景说明:AN3CA细胞建系于1964年。它衍生于子宫内膜癌患者淋巴结转移组织,具有癌细胞的基本特性,能在体外长期传代培养,接种实验动物产生明显肿瘤。但细胞的生物学特性及超微结构尚未深入研究,仅发现该细胞系促黑激素合成为阴性。细胞常用于人子宫内膜癌细胞生物学及其相关特性研究。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:MB 157 Cells、C6661 Cells、Rat podocyte Cells
    Me-Wo Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:5传代,2-3天换液1次。;生长特性:混合生长;形态特性:成纤维细胞;相关产品有:CEM Cells、HO1-N-1 Cells、SW837 Cells
    DHL-6 Cells;背景说明:详见相关文献介绍;传代方法:1:3—1:6传代,3—4天换液1次;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:MLMA Cells、H719 Cells、A549/DDP Cells
    DHL-6 Cells;背景说明:详见相关文献介绍;传代方法:1:3—1:6传代,3—4天换液1次;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:MLMA Cells、H719 Cells、A549/DDP Cells
    Ramos(RA1) Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:IPEC-J2 Cells、SK-Mel 2 Cells、COLO320/DM Cells
    KBM-5 Cells;背景说明:慢性髓白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:BPH-1 Cells、University of Michigan-Urothelial Carcinoma-1 Cells、Oregon J-111 Cells
    IPLB-Sf21 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:OV-2008 Cells、HNTEC Cells、KYSE-510 Cells
    HR1K Cells;背景说明:详见相关文献介绍;传代方法:每2-3天换液;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:JB6 Cl 30-7b Cells、TM-4 Cells、IB-RS2 Cells
    DITNC1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维母细胞样;相关产品有:GES-1 Cells、LU165 Cells、HEK-AD293 Cells
    DLD1 Cells;背景说明:DLD-1是1977-1979年间D.L.Dexter和同事分离的两株结直肠腺癌细胞株中的一株。在ATCC和其它地方进行的DNAfingerprinting和染色体组型分析表明这株细胞与HCT-15(CCL-225)相似,说明这两者是来自同一个人的不同克隆。他们的遗传起源可通过DNAfingerprinting证实,但染色体组型分析显示它们缺乏染色体标记一致改变或数目上一致改变。细胞的CSAp阴性(CSAp-)。DLD-1细胞的p53抗原表达呈阳性(p53抗原产生了一个C->;传代方法:消化5分钟。1:2。4-5天长满。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:AgC11x3A Cells、Roswell Park Memorial Institute 1846 Cells、Mahlavu Cells
    SCI1 Cells;背景说明:胚胎;自发永生;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HC11 Mammary Epithelium Cells、SK-NSH Cells、PIGI Cells
    RT4人膀胱移行细胞乳头瘤传代细胞长期复苏|送STR图谱
    NTERA-2cl.D1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:DHBE Cells、MDA PCa 2b Cells、KCL22S Cells
    U2-OS Cells;背景说明:骨肉瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:bEnd3 Cells、SK-RC-52 Cells、OAW-42 Cells
    SCC-12B Cells(拥有STR基因鉴定图谱)
    GLRK 13 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:IB-RS-2 Cells、RCC_7860 Cells、67NR Cells
    CORL88 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:H-1819 Cells、Vx2 Cells、MESSA/Dx5 Cells
    KLE Cells;背景说明:该细胞源自64岁子宫内膜癌女性患者;传代方法:1:3传代,3-4天换液一次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:Chinese Hamster Ovary Cells、T-CAM2 Cells、Madison lung Cells
    HN4 Cells;背景说明:喉鳞癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:LA4 Cells、MDA361 Cells、H-1618 Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    L-cell Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:MC116 Cells、TW-039 Cells、NCI-H1755 Cells
    DMS-79 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代;每周换液2-3次。;生长特性:悬浮生长;形态特性:详见产品说明;相关产品有:U031 Cells、AM38 Cells、UMUC1 Cells
    GM00346B Cells;背景说明:皮下结缔组织;自发永生;雄性;C3H/An;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:ReNcell CX Cells、RCC10 RGB Cells、TR-146 Cells
    HGE Cells;背景说明:牙龈;上皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Hs343T Cells、ECGI10 Cells、A-2058 Cells
    HFL-I Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Tregs Cells、HT1376 Cells、H-295 Cells
    BTT739 Cells;背景说明:膀胱移行细胞癌 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:U-937 Cells、DHL-2 Cells、NCTC-1469 Cells
    COC1/CDDP Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:UCLA RO-81A-1 Cells、T-cell Acute Lymphoblastic Leukemia-1 Cells、B16/F1 Cells
    L132 Cells;背景说明:胚肺;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SW 579 Cells、NCI-H1341 Cells、G-402 Cells
    SW 954 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:6传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:MDA-MB435 Cells、Radiation Effects Research Foundation-Lung Cancer-MS Cells、GEO Cells
    Psi2 DAP Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:H28 Cells、V 79 Cells、McA-RH 8994 Cells
    BayGenomics ES cell line HMA140 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line XB424 Cells(拥有STR基因鉴定图谱)
    CH31 Cells(拥有STR基因鉴定图谱)
    MANDYS101-7D12 Cells(拥有STR基因鉴定图谱)
    RP.0.03 Cells(拥有STR基因鉴定图谱)
    Ubigene H9c2(2-1) Fgfr1 KO Cells(拥有STR基因鉴定图谱)
    "    "PubMed=833871; DOI=10.1093/jnci/58.2.209
    Fogh J., Wright W.C., Loveless J.D.
    Absence of HeLa cell contamination in 169 cell lines derived from human tumors.
    J. Natl. Cancer Inst. 58:209-214(1977)

    PubMed=864752; DOI=10.1093/jnci/58.6.1743
    Marshall C.J., Franks L.M., Carbonell A.W.
    Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas.
    J. Natl. Cancer Inst. 58:1743-1751(1977)

    PubMed=870558; DOI=10.1177/25.4.870558
    Benham F.J., Cottell D.C., Franks L.M., Wilson P.D.
    Alkaline phosphatase activity in human bladder tumor cell lines.
    J. Histochem. Cytochem. 25:266-274(1977)

    PubMed=77569; DOI=10.1111/j.1399-0039.1978.tb01259.x
    Espmark J.A., Ahlqvist-Roth L., Sarne L., Persson A.
    Tissue typing of cells in culture. III. HLA antigens of established human cell lines. Attempts at typing by the mixed hemadsorption technique.
    Tissue Antigens 11:279-286(1978)

    PubMed=571047
    Fogh J.
    Cultivation, characterization, and identification of human tumor cells with emphasis on kidney, testis, and bladder tumors.
    Natl. Cancer Inst. Monogr. 49:5-9(1978)

    PubMed=6244232
    Williams R.D.
    Human urologic cancer cell lines.
    Invest. Urol. 17:359-363(1980)

    PubMed=7017212; DOI=10.1093/jnci/66.6.1003
    Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.
    HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.
    J. Natl. Cancer Inst. 66:1003-1012(1981)

    PubMed=7459858
    Rousset M., Zweibaum A., Fogh J.
    Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
    Cancer Res. 41:1165-1170(1981)

    PubMed=6220172
    Dracopoli N.C., Fogh J.
    Polymorphic enzyme analysis of cultured human tumor cell lines.
    J. Natl. Cancer Inst. 70:469-476(1983)

    PubMed=6823318; DOI=10.1038/301429a0
    O'Toole C.M., Povey S., Hepburn P.J., Franks L.M.
    Identity of some human bladder cancer cell lines.
    Nature 301:429-430(1983)

    PubMed=6582512; DOI=10.1073/pnas.81.2.568; PMCID=PMC344720
    Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
    Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
    Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984)

    PubMed=3518877; DOI=10.3109/07357908609038260
    Fogh J.
    Human tumor lines for cancer research.
    Cancer Invest. 4:157-184(1986)

    PubMed=3708594
    Masters J.R.W., Hepburn P.J., Walker L., Highman W.J., Trejdosiewicz L.K., Povey S., Parkar M., Hill B.T., Riddle P.N., Franks L.M.
    Tissue culture model of transitional cell carcinoma: characterization of twenty-two human urothelial cell lines.
    Cancer Res. 46:3630-3636(1986)

    PubMed=7787250
    Cooper M.J., Haluschak J.J., Johnson D., Schwartz S., Morrison L.J., Lippa M., Hatzivassiliou G., Tan J.
    p53 mutations in bladder carcinoma cell lines.
    Oncol. Res. 6:569-579(1994)

    PubMed=8873383; DOI=10.1007/BF00295899
    Stadler W.M., Olopade O.I.
    The 9p21 region in bladder cancer cell lines: large homozygous deletion inactivate the CDKN2, CDKN2B and MTAP genes.
    Urol. Res. 24:239-244(1996)

    PubMed=9850064
    Markl I.D.C., Jones P.A.
    Presence and location of TP53 mutation determines pattern of CDKN2A/ARF pathway inactivation in bladder cancer.
    Cancer Res. 58:5348-5353(1998)

    PubMed=11207054; DOI=10.1054/bjoc.2000.1641; PMCID=PMC2363759
    Fujiyama C., Jones A., Fuggle S.V., Bicknell R., Cranston D., Harris A.L.
    Human bladder cancer invasion model using rat bladder in vitro and its use to test mechanisms and therapeutic inhibitors of invasion.
    Br. J. Cancer 84:558-564(2001)

    PubMed=11921286; DOI=10.1002/gcc.10050
    Williams S.V., Sibley K.D., Davies A.M., Nishiyama H., Hornigold N., Coulter J., Kennedy W.J., Skilleter A., Habuchi T., Knowles M.A.
    Molecular genetic analysis of chromosome 9 candidate tumor-suppressor loci in bladder cancer cell lines.
    Genes Chromosomes Cancer 34:86-96(2002)

    PubMed=15846775; DOI=10.1002/gcc.20166
    Williams S.V., Adams J., Coulter J., Summersgill B.M., Shipley J.M., Knowles M.A.
    Assessment by M-FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro.
    Genes Chromosomes Cancer 43:315-328(2005)

    PubMed=16885334; DOI=10.1158/0008-5472.CAN-06-1182
    Lopez-Knowles E., Hernandez S., Malats N., Kogevinas M., Lloreta J., Carrato A., Tardon A., Serra C., Real F.X.
    PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors.
    Cancer Res. 66:7401-7404(2006)

    PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113
    Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
    Signatures of mutation and selection in the cancer genome.
    Nature 463:893-898(2010)

    PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
    Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
    A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
    Cancer Res. 70:2158-2164(2010)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=23401075; DOI=10.1002/path.4176
    Guo Y.-N., Chekaluk Y., Zhang J.-M., Du J.-Y., Gray N.S., Wu C.-L., Kwiatkowski D.J.
    TSC1 involvement in bladder cancer: diverse effects and therapeutic implications.
    J. Pathol. 230:17-27(2013)

    PubMed=24367658; DOI=10.1371/journal.pone.0084411; PMCID=PMC3867501
    Ross R.L., Burns J.E., Taylor C.F., Mellor P., Anderson D.H., Knowles M.A.
    Identification of mutations in distinct regions of p85 alpha in urothelial cancer.
    PLoS ONE 8:E84411-E84411(2013)

    PubMed=24018021; DOI=10.1016/j.eururo.2013.08.052
    Allory Y., Beukers W., Sagrera A., Flandez M., Marques M., Marquez M., van der Keur K.A., Dyrskjot L., Lurkin I., Vermeij M., Carrato A., Lloreta J., Lorente J.A., Carrillo-de-Santa-Pau E., Masius R.G., Kogevinas M., Steyerberg E.W., van Tilborg A.A.G., Abas C., Orntoft T.F., Zuiverloon T.C.M., Malats N., Zwarthoff E.C., Real F.X.
    Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome.
    Eur. Urol. 65:360-366(2014)

    PubMed=24035680; DOI=10.1016/j.eururo.2013.08.057
    Hurst C.D., Platt F.M., Knowles M.A.
    Comprehensive mutation analysis of the TERT promoter in bladder cancer and detection of mutations in voided urine.
    Eur. Urol. 65:367-369(2014)

    PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
    Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
    A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
    OncoImmunology 3:e954893.1-e954893.12(2014)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=25997541; DOI=10.1186/s12864-015-1450-3; PMCID=PMC4470036
    Earl J., Rico D., Carrillo-de-Santa-Pau E., Rodriguez-Santiago B., Mendez-Pertuz M., Auer H., Gomez G., Grossman H.B., Pisano D.G., Schulz W.A., Perez-Jurado L.A., Carrato A., Theodorescu D., Chanock S.J., Valencia A., Real F.X.
    The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies.
    BMC Genomics 16:403.1-403.16(2015)

    PubMed=26055179; DOI=10.1016/j.tranon.2015.04.002; PMCID=PMC4487788
    Vallo S., Michaelis M., Rothweiler F., Bartsch G., Gust K.M., Limbart D.M., Rodel F., Wezel F., Haferkamp A., Cinatl J. Jr.
    Drug-resistant urothelial cancer cell lines display diverse sensitivity profiles to potential second-line therapeutics.
    Transl. Oncol. 8:210-216(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
    Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
    A landscape of pharmacogenomic interactions in cancer.
    Cell 166:740-754(2016)

    PubMed=27270441; DOI=10.1038/onc.2016.172; PMCID=PMC5140783
    Nickerson M.L., Witte N., McGee Im K., Turan S., Owens C.R., Misner K., Tsang S.X., Cai Z.-M., Wu S., Dean M., Costello J.C., Theodorescu D.
    Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.
    Oncogene 36:35-46(2017)

    PubMed=28855393; DOI=10.1098/rsob.170080; PMCID=PMC5577446
    Sarkar S., Ryan E.L., Royle S.J.
    FGFR3-TACC3 cancer gene fusions cause mitotic defects by removal of endogenous TACC3 from the mitotic spindle.
    Open Biol. 7:170080.1-170080.11(2017)

    PubMed=29732388; DOI=10.3233/BLC-180167; PMCID=PMC5929350
    Zuiverloon T.C.M., de Jong F.C., Costello J.C., Theodorescu D.
    Systematic review: characteristics and preclinical uses of bladder cancer cell lines.
    Bladder Cancer 4:169-183(2018)

    PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
    Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
    An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
    Cancer Res. 79:1263-1273(2019)

    PubMed=31068700; DOI=10.1038/s41586-019-1186-3; PMCID=PMC6697103
    Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. 3rd, Barretina J.G., Gelfand E.T., Bielski C.M., Li H.-X., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y.-L., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
    Next-generation characterization of the Cancer Cell Line Encyclopedia.
    Nature 569:503-508(2019)"

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献
    "PubMed=833871; DOI=10.1093/jnci/58.2.209
    Fogh J., Wright W.C., Loveless J.D.
    Absence of HeLa cell contamination in 169 cell lines derived from human tumors.
    J. Natl. Cancer Inst. 58:209-214(1977)

    PubMed=864752; DOI=10.1093/jnci/58.6.1743
    Marshall C.J., Franks L.M., Carbonell A.W.
    Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas.
    J. Natl. Cancer Inst. 58:1743-1751(1977)

    PubMed=870558; DOI=10.1177/25.4.870558
    Benham F.J., Cottell D.C., Franks L.M., Wilson P.D.
    Alkaline phosphatase activity in human bladder tumor cell lines.
    J. Histochem. Cytochem. 25:266-274(1977)

    PubMed=77569; DOI=10.1111/j.1399-0039.1978.tb01259.x
    Espmark J.A., Ahlqvist-Roth L., Sarne L., Persson A.
    Tissue typing of cells in culture. III. HLA antigens of established human cell lines. Attempts at typing by the mixed hemadsorption technique.
    Tissue Antigens 11:279-286(1978)

    PubMed=571047
    Fogh J.
    Cultivation, characterization, and identification of human tumor cells with emphasis on kidney, testis, and bladder tumors.
    Natl. Cancer Inst. Monogr. 49:5-9(1978)

    PubMed=6244232
    Williams R.D.
    Human urologic cancer cell lines.
    Invest. Urol. 17:359-363(1980)

    PubMed=7017212; DOI=10.1093/jnci/66.6.1003
    Pollack M.S., Heagney S.D., Livingston P.O., Fogh J.
    HLA-A, B, C and DR alloantigen expression on forty-six cultured human tumor cell lines.
    J. Natl. Cancer Inst. 66:1003-1012(1981)

    PubMed=7459858
    Rousset M., Zweibaum A., Fogh J.
    Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
    Cancer Res. 41:1165-1170(1981)

    PubMed=6220172
    Dracopoli N.C., Fogh J.
    Polymorphic enzyme analysis of cultured human tumor cell lines.
    J. Natl. Cancer Inst. 70:469-476(1983)

    PubMed=6823318; DOI=10.1038/301429a0
    O'Toole C.M., Povey S., Hepburn P.J., Franks L.M.
    Identity of some human bladder cancer cell lines.
    Nature 301:429-430(1983)

    PubMed=6582512; DOI=10.1073/pnas.81.2.568; PMCID=PMC344720
    Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
    Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
    Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984)

    PubMed=3518877; DOI=10.3109/07357908609038260
    Fogh J.
    Human tumor lines for cancer research.
    Cancer Invest. 4:157-184(1986)

    PubMed=3708594
    Masters J.R.W., Hepburn P.J., Walker L., Highman W.J., Trejdosiewicz L.K., Povey S., Parkar M., Hill B.T., Riddle P.N., Franks L.M.
    Tissue culture model of transitional cell carcinoma: characterization of twenty-two human urothelial cell lines.
    Cancer Res. 46:3630-3636(1986)

    PubMed=7787250
    Cooper M.J., Haluschak J.J., Johnson D., Schwartz S., Morrison L.J., Lippa M., Hatzivassiliou G., Tan J.
    p53 mutations in bladder carcinoma cell lines.
    Oncol. Res. 6:569-579(1994)

    PubMed=8873383; DOI=10.1007/BF00295899
    Stadler W.M., Olopade O.I.
    The 9p21 region in bladder cancer cell lines: large homozygous deletion inactivate the CDKN2, CDKN2B and MTAP genes.
    Urol. Res. 24:239-244(1996)

    PubMed=9850064
    Markl I.D.C., Jones P.A.
    Presence and location of TP53 mutation determines pattern of CDKN2A/ARF pathway inactivation in bladder cancer.
    Cancer Res. 58:5348-5353(1998)

    PubMed=11207054; DOI=10.1054/bjoc.2000.1641; PMCID=PMC2363759
    Fujiyama C., Jones A., Fuggle S.V., Bicknell R., Cranston D., Harris A.L.
    Human bladder cancer invasion model using rat bladder in vitro and its use to test mechanisms and therapeutic inhibitors of invasion.
    Br. J. Cancer 84:558-564(2001)

    PubMed=11921286; DOI=10.1002/gcc.10050
    Williams S.V., Sibley K.D., Davies A.M., Nishiyama H., Hornigold N., Coulter J., Kennedy W.J., Skilleter A., Habuchi T., Knowles M.A.
    Molecular genetic analysis of chromosome 9 candidate tumor-suppressor loci in bladder cancer cell lines.
    Genes Chromosomes Cancer 34:86-96(2002)

    PubMed=15846775; DOI=10.1002/gcc.20166
    Williams S.V., Adams J., Coulter J., Summersgill B.M., Shipley J.M., Knowles M.A.
    Assessment by M-FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro.
    Genes Chromosomes Cancer 43:315-328(2005)

    PubMed=16885334; DOI=10.1158/0008-5472.CAN-06-1182
    Lopez-Knowles E., Hernandez S., Malats N., Kogevinas M., Lloreta J., Carrato A., Tardon A., Serra C., Real F.X.
    PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors.
    Cancer Res. 66:7401-7404(2006)

    PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113
    Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
    Signatures of mutation and selection in the cancer genome.
    Nature 463:893-898(2010)

    PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
    Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
    A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
    Cancer Res. 70:2158-2164(2010)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=23401075; DOI=10.1002/path.4176
    Guo Y.-N., Chekaluk Y., Zhang J.-M., Du J.-Y., Gray N.S., Wu C.-L., Kwiatkowski D.J.
    TSC1 involvement in bladder cancer: diverse effects and therapeutic implications.
    J. Pathol. 230:17-27(2013)

    PubMed=24367658; DOI=10.1371/journal.pone.0084411; PMCID=PMC3867501
    Ross R.L., Burns J.E., Taylor C.F., Mellor P., Anderson D.H., Knowles M.A.
    Identification of mutations in distinct regions of p85 alpha in urothelial cancer.
    PLoS ONE 8:E84411-E84411(2013)

    PubMed=24018021; DOI=10.1016/j.eururo.2013.08.052
    Allory Y., Beukers W., Sagrera A., Flandez M., Marques M., Marquez M., van der Keur K.A., Dyrskjot L., Lurkin I., Vermeij M., Carrato A., Lloreta J., Lorente J.A., Carrillo-de-Santa-Pau E., Masius R.G., Kogevinas M., Steyerberg E.W., van Tilborg A.A.G., Abas C., Orntoft T.F., Zuiverloon T.C.M., Malats N., Zwarthoff E.C., Real F.X.
    Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome.
    Eur. Urol. 65:360-366(2014)

    PubMed=24035680; DOI=10.1016/j.eururo.2013.08.057
    Hurst C.D., Platt F.M., Knowles M.A.
    Comprehensive mutation analysis of the TERT promoter in bladder cancer and detection of mutations in voided urine.
    Eur. Urol. 65:367-369(2014)

    PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
    Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
    A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
    OncoImmunology 3:e954893.1-e954893.12(2014)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=25997541; DOI=10.1186/s12864-015-1450-3; PMCID=PMC4470036
    Earl J., Rico D., Carrillo-de-Santa-Pau E., Rodriguez-Santiago B., Mendez-Pertuz M., Auer H., Gomez G., Grossman H.B., Pisano D.G., Schulz W.A., Perez-Jurado L.A., Carrato A., Theodorescu D., Chanock S.J., Valencia A., Real F.X.
    The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies.
    BMC Genomics 16:403.1-403.16(2015)

    PubMed=26055179; DOI=10.1016/j.tranon.2015.04.002; PMCID=PMC4487788
    Vallo S., Michaelis M., Rothweiler F., Bartsch G., Gust K.M., Limbart D.M., Rodel F., Wezel F., Haferkamp A., Cinatl J. Jr.
    Drug-resistant urothelial cancer cell lines display diverse sensitivity profiles to potential second-line therapeutics.
    Transl. Oncol. 8:210-216(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
    Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
    A landscape of pharmacogenomic interactions in cancer.
    Cell 166:740-754(2016)

    PubMed=27270441; DOI=10.1038/onc.2016.172; PMCID=PMC5140783
    Nickerson M.L., Witte N., McGee Im K., Turan S., Owens C.R., Misner K., Tsang S.X., Cai Z.-M., Wu S., Dean M., Costello J.C., Theodorescu D.
    Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.
    Oncogene 36:35-46(2017)

    PubMed=28855393; DOI=10.1098/rsob.170080; PMCID=PMC5577446
    Sarkar S., Ryan E.L., Royle S.J.
    FGFR3-TACC3 cancer gene fusions cause mitotic defects by removal of endogenous TACC3 from the mitotic spindle.
    Open Biol. 7:170080.1-170080.11(2017)

    PubMed=29732388; DOI=10.3233/BLC-180167; PMCID=PMC5929350
    Zuiverloon T.C.M., de Jong F.C., Costello J.C., Theodorescu D.
    Systematic review: characteristics and preclinical uses of bladder cancer cell lines.
    Bladder Cancer 4:169-183(2018)

    PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
    Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
    An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
    Cancer Res. 79:1263-1273(2019)

    PubMed=31068700; DOI=10.1038/s41586-019-1186-3; PMCID=PMC6697103
    Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. 3rd, Barretina J.G., Gelfand E.T., Bielski C.M., Li H.-X., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y.-L., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
    Next-generation characterization of the Cancer Cell Line Encyclopedia.
    Nature 569:503-508(2019)"
    图标技术资料

    需要更多技术资料 索取更多技术资料

    资料下载:

    产品(17).jpg 附 (下载 0 次)

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥850
    上海冠导生物工程有限公司
    2025年07月11日询价
    ¥1200
    上海艾研生物科技有限公司
    2025年06月28日询价
    询价
    上海哈灵生物科技有限公司
    2025年09月01日询价
    ¥800
    上海抚生实业有限公司
    2025年07月09日询价
    询价
    上海雅吉生物科技有限公司
    2025年07月05日询价
    文献支持
    RT4人膀胱移行细胞乳头瘤传代细胞长期复苏|送STR图谱
    ¥850 - 2150