AsPC-1人转移胰腺腺癌传代细胞长期复苏|送STR图谱
文献支持

AsPC-1人转移胰腺腺癌传代细胞长期复苏|送STR图谱

收藏
  • ¥850 - 2150
  • 冠导生物
  • AsPC-1人转移胰腺腺癌传代细胞长期复苏|送STR图谱
  • 美国、德国、欧洲等
  • 2025年07月13日
    avatar
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 文献和实验
    • 技术资料
    • 品系

      详见细胞说明资料

    • 细胞类型

      详见细胞说明资料

    • 肿瘤类型

      详见细胞说明资料

    • 供应商

      上海冠导生物工程有限公司

    • 库存

      ≥100瓶

    • 生长状态

      详见细胞说明资料

    • 年限

      详见细胞说明资料

    • 运输方式

      常温运输【复苏细胞】或干冰运输【冻存细胞】

    • 器官来源

      详见细胞说明资料

    • 是否是肿瘤细胞

      详见细胞说明资料

    • 细胞形态

      详见细胞说明资料

    • 免疫类型

      详见细胞说明资料

    • 物种来源

      详见细胞说明资料

    • 相关疾病

      详见细胞说明资料

    • 组织来源

      详见细胞说明资料

    • 英文名

      AsPC-1人转移胰腺腺癌传代细胞长期复苏|送STR图谱

    • 规格

      1*10(6)Cellls/瓶

    "AsPC-1人转移胰腺腺癌传代细胞长期复苏|送STR图谱
    传代方法:1:2-1:4(首次传代建议1:2)
    生长特性:贴壁生长
    换液频率:每周2-3次
    背景资料:该细胞来源于人胰腺癌裸鼠异种移植产生的癌性腹水,可以表达A,人胰腺相关抗原、人胰腺特异性抗原和黏蛋白。
    上皮细胞(epithelial cell)是构成上皮组织的基本单位,广泛分布在人体的各个表面和体腔内,外胚层来源:皮肤、腺垂体、内耳膜、角膜、晶状体、鼻腔、口腔、肛门等处的上皮细胞由外胚层发育而来。中胚层来源:间皮、内皮等上皮细胞由中胚层发育而来。内胚层来源:中耳、呼吸道、肺、胸腺、消化道、消化腺、膀胱、阴道、甲状腺、甲状旁腺等处的上皮细胞由内胚层发育而来。许多癌症起源于上皮细胞,如肝细胞癌、结直肠癌、乳腺癌、肺癌、胃癌、前列腺癌、卵巢癌和子宫内膜癌。这些癌症中的上皮细胞通常表现出细胞标志物的变化,如E-cadherin的缺失和N-cadherin、vimentin等间充质细胞标志物的表达上调。
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    GIST-R4ma Cells(拥有STR基因鉴定图谱)
    SW1463 Cells;背景说明:详见相关文献介绍;传代方法:1:3—1:8传代,每周换液1-2次;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:H69 Cells、SF539 Cells、TE1 Cells
    C57 Mouse Tumor 64 Cells;背景说明:肺腺癌;雌性;C57;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:BALB/3T3 Cells、MDAPCa2b Cells、RT-4 Cells
    AsPC-1人转移胰腺腺癌传代细胞长期复苏|送STR图谱
    产品包装形式:复苏细胞:T25培养瓶(一瓶)或冻存细胞:1ml冻存管(两支)
    来源说明:细胞主要来源ATCC、DSMZ等细胞库
    在细胞培养过程中会出现这样或那样的问题,客户遇到的问题从细胞生长角度来说,针对细胞培养过程中生长不HAO、甚至死亡的原因,我们做以下分析并提出相对应的解决方法。一、培养细胞生长不HAO》可能原因:细胞本身的状态》1)细胞传代次数多,细胞老化;2)细胞的接种量:接种量过低,细胞生长缓慢;3)细胞传代时间过晚:细胞中毒,影响传代后的细胞生长;4)胰酶消化时间过长或过短:时间过长,细胞死亡;时间过短,细胞未完全分离而成团,细胞死亡;5)细胞的冻存与复苏:慢冻速融。污染:1)支原体污染;2)霉菌污染;培养基或血清:1)更换血清或培养基之前未进行验证;2)选择的培养基是否合适;3)培养基配制是否准确无误;培养环境:1)CO2供应是否正常;2)培养箱或摇床温度控制是否正确;解决方法:根据以上四个方面的可能原因,做出针对性的解决方案》1)注意细胞的本身状态:如传代次数、接种量等;2)避免产生污染(用正规、合法、可溯源的血清);3)要用合适的血清或培养基,ZuiHAO经过验证;4)注意实验室的环境;二、培养细胞死亡》可能原因:1)培养箱内无CO2;2)培养箱内温度波动太大;3)细胞冻存或复苏过程中损伤;4)培养渗透压不正确;5)培养中有毒代谢产物堆积;解决方法:1)检测培养箱内CO2;2)检查培养箱内温度;3)取新的保存细胞种;4)检测培养渗透压;5)换入新鲜培养。
    物种来源:Human\Mouse\Rat\Others
    HUC Cells;背景说明:尿道;上皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:FK81 Cells、HuT78 Cells、OSK-1 Cells
    KYSE270 Cells;背景说明:详见相关文献介绍;传代方法:1:5传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:2780CP Cells、P3JHR1 Cells、BALB/3T3 Cells
    SH-SY5Y Parental Cells;背景说明:据报道,该细胞的密度可高达1×106cells/cm2,具有中等水平的多巴胺β羟化酶的活性。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:KYSE-70 Cells、YD38 Cells、Calu6 Cells
    AsPC-1人转移胰腺腺癌传代细胞长期复苏|送STR图谱
    形态特性:上皮细胞样
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    贴壁细胞的传代培养,详细步骤如下:首先倒掉培养基,在这一步骤可以收集一些细胞上清做支原体检测;加入胰蛋白酶,一般T25是加2mL,盖好瓶盖,摇晃T25培养瓶,使胰蛋白酶均匀覆盖在细胞表面,放入培养箱2-3min,期间可在显微镜下观察,看到大部分细胞变圆,即可放入超净台,加入2倍的完全培养基,这里就是加4mL培养基,终止消化;将含有胰蛋白酶,细胞和培养基一起转移到离心管中,1000rpm/3min离心,去掉上清;新鲜的完全培养基重悬,根据细胞的生长特性和后续的实验需求进行传代,比如我养的Hepa1-6就长的比较快,不是着急用的话,我就会按1E6个细胞/T75培养瓶进行传代;但如果后两天要用,就会适当多传一点;还可通过显微镜计数后,直接用于细胞铺板,继续后续的实验。
    Mv 1 Lu (NBL-7) Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:BCaP 37 Cells、H-1944 Cells、NCI-UMC-11 Cells
    C-127 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:McARH7777 Cells、TOV112 Cells、BPH-1 Cells
    MDAPCa2b Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:TE3 Cells、JM1 Cells、Lieming Xu-2 Cells
    NTERA2 Cells;背景说明:畸胎瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NBL-4 Cells、NK-92 MI Cells、SW 1353 Cells
    TCam-2 Cells;背景说明:睾丸精原细胞瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SKMES-1 Cells、NB-9 Cells、HFF Cells
    Rabbit Kidney 13 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:NCIH1650 Cells、A2780CP70 Cells、SK-N-BE2C Cells
    P3/NS1/Ag4-1 Cells;背景说明:这是P3X63Ag8(ATCCTIB-9)的一个不分泌克隆。Kappa链合成了但不分泌。能抗0.1mM8-氮杂鸟嘌呤但不能在HAT培养基中生长。据报道它是由于缺失了3-酮类固醇还原酶活性的胆固醇营养缺陷型。检测表明肢骨发育畸形病毒(鼠痘)阴性。;传代方法:1:2传代,3天内可长满。;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:2008 Cells、AA-Mel Cells、SMMC-7721 Cells
    RPMI-7666 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:T HEECs Cells、NTERA-2/D1 Cells、Hs281T Cells
    ATDC5 Cells;背景说明:详见相关文献介绍;传代方法:消化3-5分钟,1:2,3天内可长满;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:L23/P Cells、RGC-6 Cells、Calf Pulmonary Artery 47 Cells
    MO59J Cells;背景说明:详见相关文献介绍;传代方法:1:6-1:8传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:PIG3 Cells、LICR-LON-HN6 Cells、TE7 Cells
    32D.3 Cells;背景说明:骨髓淋巴瘤;C3H/HeJ;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:TKB-1 Cells、Hs 636.T Cells、Capan1 Cells
    NCI-H226 Cells;背景说明:1980年分离建立。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:Doubling time: ~50 hours (ATCC). Cells、H820 Cells、RA Cells
    COLO-320-DM Cells;背景说明:该细胞可产生5-羟色胺、去甲、、ACTH和甲状旁腺素。角蛋白、波形蛋白弱阳性。培养条件: RPMI 1640  10%FBS;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮+贴壁;形态特性:淋巴细胞;相关产品有:GEO Cells、KYSE-520 Cells、SW1353 Cells
    UMC11 Cells;背景说明:肺肿瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:U-373-MG Cells、KRC/Y Cells、NTERA-2 cl.D1 Cells
    Mink Lung Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:NCI-H1915 Cells、HCC-44 Cells、LNCaP clone FGC Cells
    Farage OL Cells;背景说明:Farage细胞源于一名患有弥漫性大B细胞淋巴瘤(DLBCL)白人女性的活检淋巴组织,由HBen-Bassat建系。经IL-4处理,该细胞CD21,CD22,CD54和CD58表达上调,而CD21,CD22,andCD38表达下调。;传代方法:1:3传代,2-3天传一代;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:F-36P Cells、SK-RC 52 Cells、SK-MEL5 Cells
    CLONE M3 Cells;背景说明:黑色素瘤;雄性;DBA;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:P3-X63-Ag 8.653 Cells、A3 Cells、HPAF-II Cells
    Abcam HEK293T CNPY2 KO Cells(拥有STR基因鉴定图谱)
    AG09527 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line NPX086 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line XC411 Cells(拥有STR基因鉴定图谱)
    BSM Cells(拥有STR基因鉴定图谱)
    Control-2Corr#7 Cells(拥有STR基因鉴定图谱)
    DA03993 Cells(拥有STR基因鉴定图谱)
    DA05622 Cells(拥有STR基因鉴定图谱)
    IPLB-Sf21-AE Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SNU1 Cells、H-1648 Cells、MT-2J Cells
    A-9 Cells;背景说明:皮下结缔组织;自发永生;雄性;C3H/An;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:LAD 2 Cells、IOSE 29 Cells、ETCC-007 Cells
    AsPC-1人转移胰腺腺癌传代细胞长期复苏|送STR图谱
    CMT167 Cells;背景说明:肺腺癌;雌性;C57BL/ICRF-a(t);传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NS1/1-Ag4.1 Cells、LIM-1215 Cells、MC/CAR Cells
    OE-21 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:Colon26 Cells、Jurkat E6.1 Cells、H250 Cells
    HTori3 Cells;背景说明:甲状腺;SV40转化;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:GM637A Cells、MDA330 Cells、P30/Ohkubo Cells
    OP9 Cells;背景说明:骨髓基质;C57BL/6 x C3H;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SNU354 Cells、P3X63 Ag8 Cells、HCC-1187 Cells
    H-2330 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Soleus clone 8 Cells、RL-952 Cells、HEK293FT Cells
    Y3-Ag1,2,3 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HO-8910 Cells、CD18/HPAF Cells、LLC-MK2 Cells
    201-45E9 Cells(拥有STR基因鉴定图谱)
    OAW 42 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:RMG-I Cells、ME-180 Cells、RPMI no 8226 Cells
    HFL-1 Cells;背景说明:详见相关文献介绍;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:CCRF-SB Cells、RCC10RGB Cells、H196 Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    U 138 MG Cells;背景说明:星形细胞瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:A375-MEL Cells、R-1059-D Cells、32D-Cl3 Cells
    KU1919 Cells;背景说明:膀胱癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MC9 Cells、NMC-G1 Cells、Panc 04.03 Cells
    H647ell Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:6传代;每周换液2次。;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:SMMC-7721 Cells、C3H10T1/2 Cells、OCIAML4 Cells
    WSU-HN13 Cells;背景说明:舌鳞癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:RPMI 8402 Cells、H2073 Cells、DAN-G Cells
    Hs578Bst Cells;背景说明:乳腺 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:RCC10 RGB Cells、A427 Cells、EFM192C Cells
    MN-9D Cells;背景说明:多巴胺能神经元 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Mono Mac6 Cells、BT549 Cells、H-2405 Cells
    GM10725 Cells(拥有STR基因鉴定图谱)
    HAP1 CDH3 (-) 3 Cells(拥有STR基因鉴定图谱)
    HCE-T Cells;背景说明:角膜上皮细胞;Ad-SV40转化;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Panc-8_13 Cells、CBRH-7919 Cells、HTh-74 Cells
    SCL I Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:UCW 100 Cells、SF-295 Cells、Centre Antoine Lacassagne-33 Cells
    B16F1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:870 Cells、IPLB-Sf21 Cells、BALB/3T3 cl. A31 Cells
    HUC-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:NCI-H187 Cells、Astrocyte type I clone Cells、TE-12 Cells
    NIE-115 Cells;背景说明:神经母细胞瘤;雄性;A/J;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MRASMC Cells、Hs852 Cells、L5178Y Cells
    Normal fibroblast-10 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:58F Cells、PNT1A Cells、JVM-2 Cells
    SUDHL2 Cells;背景说明:弥漫性大细胞淋巴瘤;胸腔积液转移;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:L-M (TK-) Cells、SV-HUC Cells、NCTC929 Cells
    NCIH2171 Cells;背景说明:详见相关文献介绍;传代方法:3-4天换液1次。;生长特性:悬浮生长;形态特性:聚团悬浮;相关产品有:CAL-148 Cells、NCI-H2073 Cells、LICR-LON-HN6 Cells
    HG03949 Cells(拥有STR基因鉴定图谱)
    IMA-KO-1-IDH1-R132H Cells(拥有STR基因鉴定图谱)
    LuCa3 Cells(拥有STR基因鉴定图谱)
    ND02053 Cells(拥有STR基因鉴定图谱)
    PCI-21 Cells(拥有STR基因鉴定图谱)
    UCF0041 Cells(拥有STR基因鉴定图谱)
    ZJUi010-A Cells(拥有STR基因鉴定图谱)
    HG02028 Cells(拥有STR基因鉴定图谱)
    SK MES 1 Cells;背景说明:源于一位65岁患有肺鳞状细胞癌的白人男性,自转移性胸腔积液分离而来。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:OVCAR.3 Cells、D-283MED Cells、LNCaP C4-2 Cells
    NCI-H1648 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:6传代;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:CT26-clone 25 Cells、UPCI:SCC154 Cells、MSTO-211H Cells
    HIEC Cells;背景说明:肠;上皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Hs 600.T Cells、DoHH-2 Cells、CCRF.CEM Cells
    TE-4 Cells;背景说明:详见相关文献介绍;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:GOS-3 Cells、Hs 675.T Cells、SNT-8 Cells
    NuTu-19 Cells;背景说明:卵巢癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SUP-B15 Cells、WI 38 Cells、Tb 1-Lu Cells
    NuTu-19 Cells;背景说明:卵巢癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SUP-B15 Cells、WI 38 Cells、Tb 1-Lu Cells
    NCIH208 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代;每周换液2次。;生长特性:悬浮生长,有少数细胞疏松贴壁;形态特性:上皮样;相关产品有:L6565 Cells、Murine Long bone Osteocyte-Y4 Cells、M-G63 Cells
    IBRS2 Cells;背景说明:肾;自发永生;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:DoTc2-4510 Cells、NCI-H1092 Cells、SW780 Cells
    JIMT1 Cells;背景说明:乳腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SKMel-28 Cells、CL40 Cells、Calu-6 Cells
    3LL Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:HT-22 Cells、PA-TU S Cells、SH-SY5Y Parental Cells
    OAC-P4C Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Hut292 Cells、Karpas 422 Cells、AG06814-M Cells
    OCI Ly3 Cells;背景说明:弥漫大B淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:Tokyo Medical and Dental university 8 Cells、MDAMB436 Cells、CESS Cells
    OCI-Ly 8 Cells;背景说明:弥漫大B淋巴瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:K562/ADP Cells、MOLT3 Cells、MDA-MB-436 Cells
    AsPC-1人转移胰腺腺癌传代细胞长期复苏|送STR图谱
    Suzhou Human Glioma-44 Cells;背景说明:SHG-44细胞株源自一例2-3级前沿淋巴结星细胞瘤。染色体组型显示89.2%的超三倍体。在Wistar大鼠和裸鼠中接种都能成功。细胞含有神经系统特有的S-100蛋白和星细胞特有的GFA蛋白;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:52PE Cells、H-157 Cells、B16 melanoma F10 Cells
    KYSE-30 Cells;背景说明:来源于一位64岁,患有高分化的中段食管鳞癌的男性患者。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:95-D Cells、NCTC929 Cells、3T3 L1 Cells
    SCRP6101i Cells(拥有STR基因鉴定图谱)
    MILE SVEN 1 Cells;背景说明:MS1是1994年建株的胰岛内皮细胞株。原代培养的胰岛内皮细胞用抗G418的温度敏感型SV40大T抗原(tsA-58-3)转染。抗性克隆用克隆环分离,并筛选吸收dil-Ac-LDL的。这株细胞保留了内皮细胞的许多特性,如吸收乙酰化LDL和表达八因子相关抗原及BEGF受体。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:AN3 CA Cells、Ha Fe Cells、GM04154 Cells
    MuM-2B Cells;背景说明:脉络膜黑色素瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MNNG Cells、KYSE 70 Cells、CL34 Cells
    BHK-21 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代,每周换液1-2次。;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:QGP 1 Cells、U266-B1 Cells、SUM-190 Cells
    V79 Cells;背景说明:肺;自发永生;雄性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MDCKII-WT Cells、SW-948 Cells、Tokyo Medical and Dental university 8 Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    OVCAR10 Cells;背景说明:卵巢癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:U 937 Cells、LS-180 Cells、SAOS 2 Cells
    EL-4 Cells;背景说明:EL4是从用9,10-二甲基-1,2-并蒽在C57BL小鼠中诱导的淋巴瘤中建立的。 能抗0.1 mM 化可的松,对20 mcg/ml PHA敏感。 还有一个亚株(EL4.IL-2, ATCC TIB-181)可以生成高水平的IL-2。 检测表明肢骨发育畸形病毒(鼠痘)阴性。;传代方法:1:2传代;生长特性:悬浮生长;形态特性:详见产品说明;相关产品有:NHDF Cells、16HBE14o- Cells、MHCC-97 Cells
    LK2 Cells;背景说明:肺鳞癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:H3396 Cells、PaTu 8988 S Cells、PC-3M 2B4 Cells
    Adult Retinal Pigment Epithelial cell line-19 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:Mono Mac 6 Cells、HOS-MNNG Cells、LN-229 Cells
    ST 486 Cells;背景说明:详见相关文献介绍;传代方法:每2-3天换液;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:HCEC-B4G12 Cells、KLN 205 Cells、BMF Cells
    RAMSCs Cells;背景说明:脂肪间充质干 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:H920 Cells、NHA Cells、SBC5 Cells
    TM-3 Cells;背景说明:TM3细胞在LH作用下cAMP产量升高,但对促卵泡激素没有响应。对LH的响应持续时间与血清批次有关。在LH存在下,细胞可以代谢胆固醇。检测发现鼠痘病毒阴性。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:LS174 Cells、A673 Cells、TB-1 Lu Cells
    OCI Ly1 Cells;背景说明:弥漫大B淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:NCIH1437 Cells、UM-UC14 Cells、H-1618 Cells
    Ball 1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:MDA175 Cells、BLO 11 Cells、NCIH28 Cells
    SKMES Cells;背景说明:源于一位65岁患有肺鳞状细胞癌的白人男性,自转移性胸腔积液分离而来。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:NCI-H1435 Cells、NPC-TW01 Cells、RPMI 1788 Cells
    BayGenomics ES cell line RRE240 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line XG098 Cells(拥有STR基因鉴定图谱)
    DS2D3 Cells(拥有STR基因鉴定图谱)
    MMGT16 Cells(拥有STR基因鉴定图谱)
    TEPC-1165 Cells(拥有STR基因鉴定图谱)
    LY-H12 Cells(拥有STR基因鉴定图谱)
    "
     

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献
    "PubMed=1764370; DOI=10.1038/bjc.1991.467; PMCID=PMC1977874
    Barton C.M., Staddon S.L., Hughes C.M., Hall P.A., O'Sullivan C., Kloppel G., Theis B., Russell R.C.G., Neoptolemos J., Williamson R.C.N., Lane D.P., Lemoine N.R.
    Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.
    Br. J. Cancer 64:1076-1082(1991)

    PubMed=1630814
    Ruggeri B.A., Zhang S.-Y., Caamano J., DiRado M., Flynn S.D., Klein-Szanto A.J.P.
    Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes.
    Oncogene 7:1503-1511(1992)

    PubMed=7972006; DOI=10.1073/pnas.91.23.11045; PMCID=PMC45163
    Okamoto A., Demetrick D.J., Spillare E.A., Hagiwara K., Hussain S.P., Bennett W.P., Forrester K., Gerwin B.I., Serrano M., Beach D.H., Harris C.C.
    Mutations and altered expression of p16INK4 in human cancer.
    Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994)

    PubMed=8026879; DOI=10.1002/ijc.2910580207
    Berrozpe G., Schaeffer J., Peinado M.A., Real F.X., Perucho M.
    Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer.
    Int. J. Cancer 58:185-191(1994)

    PubMed=8194712; DOI=10.1016/0016-5085(94)90422-7
    Simon B., Weinel R., Hohne M., Watz J., Schmidt J., Kortner G., Arnold R.
    Frequent alterations of the tumor suppressor genes p53 and DCC in human pancreatic carcinoma.
    Gastroenterology 106:1645-1651(1994)

    PubMed=8286197; DOI=10.1038/bjc.1994.24; PMCID=PMC1968784
    Lohr J.-M., Trautmann B., Gottler M., Peters S., Zauner I., Maillet B., Kloppel G.
    Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins.
    Br. J. Cancer 69:144-151(1994)

    PubMed=21607521; DOI=10.3892/or.1.6.1223
    Iguchi H., Morita R., Yasuda D., Takayanagi R., Ikeda Y., Takada Y., Shimazoe T., Nawata H., Kono A.
    Alterations of the p53 tumor-suppressor gene and ki-ras oncogene in human pancreatic cancer-derived cell-lines with different metastatic potential.
    Oncol. Rep. 1:1223-1227(1994)

    PubMed=9331070
    Teng D.H.-F., Perry W.L. 3rd, Hogan J.K., Baumgard M.L., Bell R., Berry S., Davis T., Frank D., Frye C., Hattier T., Hu R., Jammulapati S., Janecki T., Leavitt A., Mitchell J.T., Pero R., Sexton D., Schroeder M., Su P.-H., Swedlund B., Kyriakis J.M., Avruch J., Bartel P., Wong A.K.C., Oliphant A., Thomas A., Skolnick M.H., Tavtigian S.V.
    Human mitogen-activated protein kinase kinase 4 as a candidate tumor suppressor.
    Cancer Res. 57:4177-4182(1997)

    PubMed=9665481; DOI=10.1016/S0002-9440(10)65561-7; PMCID=PMC1852940
    Paciucci R., Vila M.R., Adell T., Diaz V.M., Tora M., Nakamura T., Real F.X.
    Activation of the urokinase plasminogen activator/urokinase plasminogen activator receptor system and redistribution of E-cadherin are associated with hepatocyte growth factor-induced motility of pancreas tumor cells overexpressing Met.
    Am. J. Pathol. 153:201-212(1998)

    PubMed=10027410; DOI=10.1016/S0002-9440(10)65298-4; PMCID=PMC1850008
    Ghadimi B.M., Schrock E., Walker R.L., Wangsa D., Jauho A., Meltzer P.S., Ried T.
    Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.
    Am. J. Pathol. 154:525-536(1999)

    PubMed=10408907; DOI=10.1016/S0304-3835(98)00380-2
    Bartsch D.K., Barth P., Bastian D., Ramaswamy A., Gerdes B., Chaloupka B., Deiss Y., Simon B., Schudy A.
    Higher frequency of DPC4/Smad4 alterations in pancreatic cancer cell lines than in primary pancreatic adenocarcinomas.
    Cancer Lett. 139:43-49(1999)

    PubMed=11115575; DOI=10.3892/or.8.1.89
    Sun C.-L., Yamato T., Furukawa T., Ohnishi Y., Kijima H., Horii A.
    Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines.
    Oncol. Rep. 8:89-92(2001)

    PubMed=11169959; DOI=10.1002/1097-0215(200002)9999:9999<::AID-IJC1049>3.0.CO;2-C
    Sirivatanauksorn V., Sirivatanauksorn Y., Gorman P.A., Davidson J.M., Sheer D., Moore P.S., Scarpa A., Edwards P.A.W., Lemoine N.R.
    Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping.
    Int. J. Cancer 91:350-358(2001)

    PubMed=11787853; DOI=10.1007/s004280100474
    Moore P.S., Sipos B., Orlandini S., Sorio C., Real F.X., Lemoine N.R., Gress T.M., Bassi C., Kloppel G., Kalthoff H., Ungefroren H., Lohr J.-M., Scarpa A.
    Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4.
    Virchows Arch. 439:798-802(2001)

    PubMed=12692724; DOI=10.1007/s00428-003-0784-4
    Sipos B., Moser S., Kalthoff H., Torok V., Lohr J.-M., Kloppel G.
    A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform.
    Virchows Arch. 442:444-452(2003)

    PubMed=14695172
    Iacobuzio-Donahue C.A., Ashfaq R., Maitra A., Adsay N.V., Shen-Ong G.L.-C., Berg K., Hollingsworth M.A., Cameron J.L., Yeo C.J., Kern S.E., Goggins M.G., Hruban R.H.
    Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.
    Cancer Res. 63:8614-8622(2003)

    PubMed=15126341; DOI=10.1158/0008-5472.CAN-03-3159
    Heidenblad M., Schoenmakers E.F.P.M., Jonson T., Gorunova L., Veltman J.A., van Kessel A.G., Hoglund M.
    Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.
    Cancer Res. 64:3052-3059(2004)

    PubMed=15367885; DOI=10.1097/00006676-200410000-00004
    Loukopoulos P., Kanetaka K., Takamura M., Shibata T., Sakamoto M., Hirohashi S.
    Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity.
    Pancreas 29:193-203(2004)

    PubMed=15688027; DOI=10.1038/sj.onc.1208383
    Heidenblad M., Lindgren D., Veltman J.A., Jonson T., Mahlamaki E.H., Gorunova L., van Kessel A.G., Schoenmakers E.F.P.M., Hoglund M.
    Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.
    Oncogene 24:1794-1801(2005)

    PubMed=15770730; DOI=10.3748/wjg.v11.i10.1521; PMCID=PMC4305696
    Ma J.-H., Patrut E., Schmidt J., Knaebel H.-P., Buchler M.W., Marten A.
    Synergistic effects of interferon-alpha in combination with chemoradiation on human pancreatic adenocarcinoma.
    World J. Gastroenterol. 11:1521-1528(2005)

    PubMed=16912165; DOI=10.1158/0008-5472.CAN-06-0721
    Calhoun E.S., Hucl T., Gallmeier E., West K.M., Arking D.E., Maitra A., Iacobuzio-Donahue C.A., Chakravarti A., Hruban R.H., Kern S.E.
    Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays.
    Cancer Res. 66:7920-7928(2006)

    PubMed=18298655; DOI=10.1111/j.1582-4934.2008.00289.x; PMCID=PMC3828895
    Pilarsky C., Ammerpohl O., Sipos B., Dahl E., Hartmann A., Wellmann A., Braunschweig T., Lohr J.-M., Jesenofsky R., Friess H., Wente M.N., Kristiansen G., Jahnke B., Denz A., Ruckert F., Schackert H.K., Kloppel G., Kalthoff H., Saeger H.-D., Grutzmann R.
    Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling.
    J. Cell. Mol. Med. 12:2823-2835(2008)

    PubMed=18380791; DOI=10.1111/j.1349-7006.2008.00779.x; PMCID=PMC11158928
    Suzuki A., Shibata T., Shimada Y., Murakami Y., Horii A., Shiratori K., Hirohashi S., Inazawa J., Imoto I.
    Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.
    Cancer Sci. 99:986-994(2008)

    CLPUB00416
    Oberlin L.
    Treatment of pancreatic carcinoma cell lines in vitro and vivo with a monoclonal antibody against the transferrin receptor.
    Thesis VMD (2009); Justus-Liebig-Universitat Giessen; Giessen; Germany

    DOI=10.4172/jpb.1000057
    Yamada M., Fujii K., Koyama K., Hirohashi S., Kondo T.
    The proteomic profile of pancreatic cancer cell lines corresponding to carcinogenesis and metastasis.
    J. Proteomics Bioinformatics 2:1-18(2009)

    PubMed=20037478; DOI=10.4161/cbt.8.21.9685; PMCID=PMC2824894
    Kent O.A., Mullendore M.E., Wentzel E.A., Lopez-Romero P., Tan A.-C., Alvarez H., West K.M., Ochs M.F., Hidalgo M., Arking D.E., Maitra A., Mendell J.T.
    A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.
    Cancer Biol. Ther. 8:2013-2024(2009)

    PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113
    Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
    Signatures of mutation and selection in the cancer genome.
    Nature 463:893-898(2010)

    PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
    Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
    A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
    Cancer Res. 70:2158-2164(2010)

    PubMed=20418756; DOI=10.1097/MPA.0b013e3181c15963; PMCID=PMC2860631
    Deer E.L., Gonzalez-Hernandez J., Coursen J.D., Shea J.E., Ngatia J.G., Scaife C.L., Firpo M.A., Mulvihill S.J.
    Phenotype and genotype of pancreatic cancer cell lines.
    Pancreas 39:425-435(2010)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=22585861; DOI=10.1158/2159-8290.CD-11-0224; PMCID=PMC5057396
    Marcotte R., Brown K.R., Suarez Saiz F.J., Sayad A., Karamboulas K., Krzyzanowski P.M., Sircoulomb F., Medrano M., Fedyshyn Y., Koh J.L.-Y., van Dyk D., Fedyshyn B., Luhova M., Brito G.C., Vizeacoumar F.J., Vizeacoumar F.S., Datti A., Kasimer D., Buzina A., Mero P., Misquitta C., Normand J., Haider M., Ketela T., Wrana J.L., Rottapel R., Neel B.G., Moffat J.
    Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
    Cancer Discov. 2:172-189(2012)

    DOI=10.4172/2324-9293.1000104
    Wagenhauser M.U., Ruckert F., Niedergethmann M., Grutzmann R., Saeger H.-D.
    Distribution of characteristic mutations in native ductal adenocarcinoma of the pancreas and pancreatic cancer cell lines.
    Cell Biol. Res. Ther. 2:1000104.1-1000104.5(2013)

    PubMed=25167228; DOI=10.1038/bjc.2014.475; PMCID=PMC4453732
    Hamidi H., Lu M., Chau K., Anderson L., Fejzo M.S., Ginther C., Linnartz R., Zubel A., Slamon D.J., Finn R.S.
    KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.
    Br. J. Cancer 111:1788-1801(2014)

    PubMed=25984343; DOI=10.1038/sdata.2014.35; PMCID=PMC4432652
    Cowley G.S., Weir B.A., Vazquez F., Tamayo P., Scott J.A., Rusin S., East-Seletsky A., Ali L.D., Gerath W.F.J., Pantel S.E., Lizotte P.H., Jiang G.-Z., Hsiao J., Tsherniak A., Dwinell E., Aoyama S., Okamoto M., Harrington W., Gelfand E.T., Green T.M., Tomko M.J., Gopal S., Wong T.C., Li H.-B., Howell S., Stransky N., Liefeld T., Jang D., Bistline J., Meyers B.H., Armstrong S.A., Anderson K.C., Stegmaier K., Reich M., Pellman D., Boehm J.S., Mesirov J.P., Golub T.R., Root D.E., Hahn W.C.
    Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
    Sci. Data 1:140035-140035(2014)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=26216984; DOI=10.1073/pnas.1501605112; PMCID=PMC4538616
    Daemen A., Peterson D., Sahu N., McCord R., Du X.-N., Liu B., Kowanetz K., Hong R., Moffat J., Gao M., Boudreau A., Mroue R., Corson L., O'Brien T., Qing J., Sampath D., Merchant M., Yauch R.L., Manning G., Settleman J., Hatzivassiliou G., Evangelista M.
    Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.
    Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=26586397; DOI=10.1007/s13277-015-4405-z
    Zhang J., Wang D.-M., Hu N., Wang Q., Yu S., Wang J.
    The construction and proliferative effects of a lentiviral vector capable of stably overexpressing SPINK1 gene in human pancreatic cancer AsPC-1 cell line.
    Tumor Biol. 37:5847-5855(2016)

    PubMed=27259358; DOI=10.1074/mcp.M116.058313; PMCID=PMC4974343
    Humphrey E.S., Su S.-P., Nagrial A.M., Hochgrafe F., Pajic M., Lehrbach G.M., Parton R.G., Yap A.S., Horvath L.G., Chang D.K., Biankin A.V., Wu J.-M., Daly R.J.
    Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.
    Mol. Cell. Proteomics 15:2671-2685(2016)

    PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
    Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
    A landscape of pharmacogenomic interactions in cancer.
    Cell 166:740-754(2016)

    PubMed=27910856; DOI=10.1038/cgt.2016.71; PMCID=PMC5159445
    Mezencev R., Matyunina L.V., Wagner G.T., McDonald J.F.
    Acquired resistance of pancreatic cancer cells to cisplatin is multifactorial with cell context-dependent involvement of resistance genes.
    Cancer Gene Ther. 23:446-453(2016)

    PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
    Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
    Characterization of human cancer cell lines by reverse-phase protein arrays.
    Cancer Cell 31:225-239(2017)

    PubMed=29444439; DOI=10.1016/j.celrep.2018.01.051; PMCID=PMC6343826
    Yuan T.L., Amzallag A., Bagni R., Yi M., Afghani S., Burgan W., Fer N., Strathern L.A., Powell K., Smith B., Waters A.M., Drubin D.A., Thomson T., Liao R., Greninger P., Stein G.T., Murchie E., Cortez E., Egan R.K., Procter L., Bess M., Cheng K.T., Lee C.-S., Lee L.C., Fellmann C., Stephens R., Luo J., Lowe S.W., Benes C.H., McCormick F.
    Differential effector engagement by oncogenic KRAS.
    Cell Rep. 22:1889-1902(2018)

    PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
    Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
    An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
    Cancer Res. 79:1263-1273(2019)

    PubMed=30971826; DOI=10.1038/s41586-019-1103-9
    Behan F.M., Iorio F., Picco G., Goncalves E., Beaver C.M., Migliardi G., Santos R., Rao Y., Sassi F., Pinnelli M., Ansari R., Harper S., Jackson D.A., McRae R., Pooley R., Wilkinson P., van der Meer D.J., Dow D., Buser-Doepner C.A., Bertotti A., Trusolino L., Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
    Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
    Nature 568:511-516(2019)

    PubMed=31068700; DOI=10.1038/s41586-019-1186-3; PMCID=PMC6697103
    Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. 3rd, Barretina J.G., Gelfand E.T., Bielski C.M., Li H.-X., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y.-L., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
    Next-generation characterization of the Cancer Cell Line Encyclopedia.
    Nature 569:503-508(2019)"
     
    图标技术资料

    需要更多技术资料 索取更多技术资料

    资料下载:

    产品(54).jpg 附 (下载 0 次)

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥850
    上海冠导生物工程有限公司
    2025年07月14日询价
    询价
    上海哈灵生物科技有限公司
    2025年09月02日询价
    ¥800
    上海抚生实业有限公司
    2025年07月09日询价
    ¥1280
    上海泽叶生物科技有限公司
    2025年07月05日询价
    ¥1680
    上海沪震实业有限公司
    2025年07月12日询价
    文献支持
    AsPC-1人转移胰腺腺癌传代细胞长期复苏|送STR图谱
    ¥850 - 2150