产品封面图
文献支持

三维细胞灌流类器官仿生培养系统

收藏
  • 询价
  • kirkstall
  • V1200-3
  • 2026年01月10日
    avatar
  • 企业认证

    • 详细信息
    • 文献和实验
    • 技术资料

    仪器设备-功能用途

     

    由于传统模型的不足:传统的体外2D细胞模型和体内动物模型常用于评估药物的安全性和有效性,但它们存在明显的缺点。例如,体内动物模型构建耗时,而体外2D细胞模型缺乏体内微环境,无法进行准确评估。

     

    尽管体外3D细胞模型,如细胞球和类器官具有优势,但它们的培养过程漫长且手动,引入了个体差异和高成本。此外,静态培养中的3D模型缺乏构建微生理系统的流体连接。

     

    作为一种动态多器官微生理系统【微生理系统,也称为器官芯片(organ-on-a-chip)技术】,通过模拟器官功能和不同器官间通信,为研究药物的药效学、药动学和整体药物反应提供了新的视角,在疾病建模和药物筛选方面显示出巨大潜力。

     

    仪器设备-发表文献:

    uBerger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schamborn JC. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip, 2018, 18, 3172-3183.

    vRamachandran S, Schirmer K, Münst B, Heinz S, Ghafoory S, Wölfl S, Simon-Keller K, Marx A, Øie C, Ebert M, Walles H, Braspenning J and Breitkopf-Heinlein K (2015). In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells. PLOS ONE, 10(10), e0139345.
    w Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin, Tayebeh Azimi, Marilena Loizidou & Miriam V. Dwek ,Scientific Reports volume 10, Article number: 12020 (2020)

    xGeddes, L., Themistou, E., Burrows, J. F., Buchanan, F. J., & Carson, L. (2021). Evaluation of the In Vitro Cytotoxicity and Modulation of the Inflammatory Response by the Bioresorbable Polymers Poly(D,L-lactide-coglycolide) and Poly(L-lactide-co-glycolide). Acta Biomaterialia, 134, 261-275.

    ySusanne Reinhold, Christian Herr, Yiwen Yao , Mehdi Pourrostami, Felix Ritzmann. Modeling of lung-liver interaction during infection in a human microfluidic organ-on-a-chip, bioRxiv preprint posted June 5, 2023.

     

     

    1) Berger E, Magliaro C, Paczia N, Monzel AS, Antony P, Linster CL, Bolognin S, Ahluwalia A, Schamborn JC. Millifluidic culture improves human midbrain organoid vitality and differentiation. Lab Chip, 2018, 18, 3172-3183.

    在本研究中,作者建立了一个在Kirkstall Quasi Vivo®器官芯片微流体条件下稳定的脑类器官培养物,并将其与使用计算流体动力学(CFD)和常规实验方法中的连续轨道振荡方法进行了比较。CFD分析是为了确定在两种实验装置中计算出的氧气量的差异是否可以用来解释在两种条件下培养的类器官中观察到的任何差异。这一比较显示了培养质量的改善,包括一个减少的“死核心”,并被模型证实,并增加了多巴胺能分化。
    产品细节图片1


    2) Ramachandran S, Schirmer K, Münst B, Heinz S, Ghafoory S, Wölfl S, Simon-Keller K, Marx A, Øie C, Ebert M, Walles H, Braspenning J and Breitkopf-Heinlein K (2015). In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells. PLOS ONE, 10(10), e0139345.

    在本研究中,作者使用upcyte®人肝细胞在体外生成肝类器官,在Kirkstall Quasi Vivo®器官芯片中进一步培养10天后,这些肝类器官表现出典型的肝实质功能特征,包括细胞色素P450、CYP3A4、CYP2B6和CYP2C9的活性,以及一些标记基因和其他酶的mRNA表达。

     产品细节图片2
    产品细节图片3


    3) Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin, Tayebeh Azimi, Marilena Loizidou & Miriam V. Dwek ,Scientific Reports volume 10, Article number: 12020 (2020)

    肿瘤微环境(TME)作为癌细胞行为调节剂的重要性已被公认,并导致了3D体外癌症模型的发展。癌症的3D实验室体外模型旨在概括肿瘤微环境的生化和生物物理特征,并旨在以生理相关的方式使研究癌症和新的治疗方式成为可能。本文作者研究了乳腺癌细胞在2D、3D和3D微流体条件下,并对比了不同培养条件下的乳腺癌细胞的凋亡、增殖和缺氧相关基因的细胞活力和表达水平。

    在该实验过程中,癌细胞被制备成一个密集的3D团块,创造了一个在Kirkstall Quasi Vivo®器官芯片流体流动条件下的肿瘤类器官,将肿瘤类器官暴露于流体和压力的生理条件下,会导致其生长、形态和对化疗挑战的敏感性的变化。该模型系统为组织密度和流体流动的作用提供了关键证据,并为使用3D模型作为癌症药物测试平台的研究人员提供参考。
    产品细节图片4

    4Geddes, L., Themistou, E., Burrows, J. F., Buchanan, F. J., & Carson, L. (2021). Evaluation of the In Vitro Cytotoxicity and Modulation of the Inflammatory Response by the Bioresorbable Polymers Poly(D,L-lactide-coglycolide) and Poly(L-lactide-co-glycolide). Acta Biomaterialia, 134, 261-275.

    医疗设备必须进行一系列的测试,以确保其在临床使用中是安全的,这些测试由国际标准化组织(ISO)规定。每个医疗设备都需要进行细胞毒性分析,这通常是体外生物相容性测试的第一步。这些测试提供了一种高效的方法来确定一种物质或一种物质对活细胞的细胞毒性,然而,它们的使用有限,因为它们不能用于确定细胞死亡的原因。在生物材料开发的早期阶段测试体外免疫反应目前还没有纳入标准程序。深入了解体外细胞对生物材料的反应将有助于早期检测和预测潜在的不良反应。

    为了复制体内环境和增加生理相关性,本文作者采用了Kirkstall Quasi Vivo®“芯片上的器官”流动培养系统,用于测试聚合物样品。
    产品细节图片5

    5Susanne Reinhold, Christian Herr, Yiwen Yao , Mehdi Pourrostami, Felix Ritzmann. Modeling of lung-liver interaction during infection in a human microfluidic organ-on-a-chip, bioRxiv preprint posted June 5, 2023.


    肺炎或COVID-19等呼吸道感染在世界范围内造成高死亡率和发病率。器官芯片技术在过去几年中发展起来,以建立基于人类的疾病模型,研究基本的疾病机制,并为加速药物开发提供工具。本研究的目的是建立一个肺-肝微流控系统来研究感染过程中两个器官模块的相互作用。

    作者利用原代人支气管(HBECs)或肺泡上皮细胞和人肝癌Huh-7细胞,通过Kirkstall Quasi Vivo®器官芯片建立了双器官(肺/肝)微流控系统,开展共培养/刺激试验。将不可分型流感嗜血杆菌(NTHi)和铜绿假单胞菌(PAO1)应用于肺模块。通过dot-blot分析筛选分泌的介质并进行定量。通过mRNA测序,分析肺上皮细菌刺激对肝细胞转录组的影响。
    产品细节图片6
    产品细节图片7

     

    (四)产品用户概况

    全球使用Kirkstall Quasi Vivo®器官芯片微生理系统的学术及研究机构已超过100+个,遍布美国、英国、法国、瑞典、奥地利、意大利、荷兰、瑞士、日本等。目前器官芯片微生理系统已成功用于以下类器官模型的构建:
    产品细节图片8
     

    (五)品牌制造商简介

    Kirkstall Ltd.成立于 2006 年,是 Braveheart Investment Group plc 的子公司,总部位于英国约克。Kirkstall开发了一种创新的微生理系统的器官芯片模型Quasi Vivo®。作为器官芯片技术的lingdaozhe,Kirkstall已经建立了牛津大学生物医学工程研究所等著名的大学实验室的庞大用户群,产品在全球范围内享有盛誉。

    北京基尔比生物科技有限公司是Kirkstall ltd.授权在中国的唯一和独家总代理商,全面负责Kirkstall公司旗下所有产品在中国的销售,市场推广和技术支持等事宜。

     

     

     

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献

    approaches have been applied to ensure proper medium supply, namely orbital shaking,11 spinning flasks6 and mini-bioreactors.10 However, applying fluidic systems (micro- or millifluidic) have not been considered, so far. In case of the hMOs, we hypothesize that keeping organoids under continuous orbital shaking as per published protocols5 might not be sufficient to ensure a proper supply of nutrients and oxygen. Therefore, to improve the quality of hMOs we investigated the effects of applying a continuous medium flow during culture. In this study we used the “Quasi Vivo” (QV, Kirkstall, UK) millifluidic system rather than a microfluidic device14 for a number of reasons. First, following the concept of allometry, the size of an organoid should range between approximately 0.5 to 2 mm in order to exhibit physiologically scaled metabolism (oxygen consumption).15,16 In addition, millifluidic systems such as the QV allow the application of relatively high flow rates ensuring proper nutrient and oxygen supply without exposing the organoid to a high shear force due to the flow itself. This is due to a well-like design in which the medium inlet and outlet are located in the chamber lid whereas the organoid is placed a variable distance from the medium inlet.17,18 Finally, given their high volume to surface ratio, millifluidic systems do not require frequent media changes, thus organoid manipulation is reduced to a minimum during culture. Besides various applications in 2D cultures, the QV millifluidic system has been successfully used to culture liver organoids13,19 and 3D cardiac constructs20 derived from human (adult) stem cells. In this study, we established a stable midbrain organoid culture under millifluidic conditions and compared it to the state-of-the-art procedure of continuous orbital shaking using both a computational fluid dynamics (CFD) and an experimental approach. The CFD analysis was performed to determine if differences in calculated oxygen profiles in the two experimental set-ups could be used to expla

    相关实验
    • 三维细胞培养-支架培养模式

      。 2. 人造基质作为支持材料的3D培养方法合成的人造基质材料类型相当多,例如Cellendes的3D Life仿生水凝胶材料;3D Biotek公司有多种3D大分子支架材料;Reinnervate公司Alvetex产品用的是聚苯乙烯(polystyrene scaffold);Life Tech公司的AlgiMatrix 3D培养系统采用褐藻原料;Synthecon和Xanofi的纳米纤维技术平台XanoMatrix采用合成纳米生物基质和培养材料;PuraMatrix采用合成肽水凝胶;其它合成材料产品

    • 选择最适合自己的3D培养系统

      反应器是含有细胞、培养基和支架(也可不含支架)的反应容器。3D Biotek公司的3D Perfusion生物反应器可与该公司的多孔3D大分子支架结合使用。 “它具有一个生物反应室,其中含有3D大分子支架,该生物反应器的培养基从底部到顶部循环流动,模拟体内环境,”Caicedo-Carvajal介绍道。 Synthecon公司的旋转三维细胞培养系统RCCS生物反应器同样既可以结合支架使用,也可以不使用支架。圆柱形的RCCS充满了培养基并且沿着水平轴旋转。“该系统通过容器上整合的硅胶模膜进行

    图标技术资料

    暂无技术资料 索取技术资料

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    询价
    北京基尔比生物科技有限公司
    2026年01月09日询价
    询价
    伯乐生命医学产品(上海)有限公司 Bio-Rad Laboratories
    2025年11月13日询价
    询价
    伯乐生命医学产品(上海)有限公司 Bio-Rad Laboratories
    2025年11月13日询价
    文献支持
    三维细胞灌流类器官仿生培养系统
    询价