万千商家帮你免费找货
0 人在求购买到急需产品
- 详细信息
- 询价记录
- 文献和实验
- 技术资料
- 库存:
1
- 国食药监械注册号:
无
- 保修期:
12个月
- 现货状态:
2周
- 供应商:
塔望科技
- 规格:
咨询电话:021-51537683/15221725700
产品描述
气道高反应性(Airway hyperresponsiveness,AHR)、气道炎症和可逆的气道阻塞是支气管哮喘的特征。通过动物模型可研究用于防治气道炎症和AHR的方法和受试药物。传统的方式多采用气管插管,检测气道阻力和肺顺应性来评估动物气道功能的改变。但这些方法有其局限性,如整体试验中麻醉药物的影响,麻醉深浅和麻醉药物对AHR的神经源和气道炎症的影响,实验人员手术操作技术上的要求和耗时,麻醉或手术后动物存活困难不能长期跟踪研究等因素。
无约束全身体积描记法(whole-body plethysmograph,WBP)可以对清醒自由活动的小动物进行肺功能及气道反应相关的测试,避免了创伤性气管切开术及麻醉的影响,在动物处于自然状态下就可以直接测定其气道反应性。而且每次可以同时检测多只动物。整个实验过程简便快捷,并适合长期跟踪研究。
产品详情
全身体积描记系统(whole-body plethysmograph,WBP)作为无创检测动物肺功能的一种经典方式,避免了麻醉及气管插管测试对动物造成的损伤,可以对2019-nCov、SARS、MERS感染下的动物肺功能指标进行长期跟踪研究。测量指标如潮气量、分钟通气量、呼气峰值流速、吸气峰值流速、呼吸频率、Penh等。这些数据和临床的数据可以建立直接的相关性,适用于SARS‐CoV和MERS等感染研究。
产品特点
适用动物种类:小鼠、幼鼠、大鼠、豚鼠、兔子、犬、猫、小型猪、猴等动物
具有喂食进水装置以方便超长时间的实验
测量通道:1-64通道
自动化偏流控制功能
可配置高频振荡雾化给药系统
特殊的减噪结构设计,可有效减少环境变化造成的干扰
可进行偏流仪降噪,提高信号的信噪比,减少系统噪音
自动校准功能,同对描记器进行全自动标定,减少手工操作引入的误差,提高实验效率
支持外接氮气或其它气体,完成低氧实验
具有分析软件,数据可保存至excel或txt格式
可选择的功能:
温湿度检测功能
咳嗽检测功能
自动活动状态静脉注射给药
心电、体温、活动度遥测
同步视频采集和记录
其它功能可定制
检测参数
Ti:吸气时间(s)
Te:呼气时间(s)
PIF:最大吸气流速(ml/s)
PEF:最大呼气流速(ml/s)
Volbal:呼吸比
F:呼吸频率(次/min)
Vt:潮气量(ml)
Mv:分钟通气量(ml)
AV:累积体积(ml)
EF50:呼出50%气量时对应的呼气流速(ml/s)
EIP:吸气峰值压力(仅在侵入式法测量时有效)
EEP:呼气峰值压力(仅在侵入式法测量时有效)
TR:松弛时间
PenH:增强呼气间歇(enhanced pause)
检测参数
呼吸频率 吸气时间 松弛时间 潮气量 呼吸流量 累积体积
吸气流量峰值 吸气末暂停 Penh 每分通气量 呼气时间
呼气流量峰值 呼气末暂停 每分通气量 其它参数
雾化给药:精确 、定量
相关扩展应用
1、吸入式毒理
将染毒物质 引入动物体积描记器,用于毒理研究
2、低氧研究
可用于低氧或高氧实验
3、呼吸代谢监控 、嗅觉行为学

监测吸氧浓度、 CO2浓度、呼吸代谢率,可以用于嗅觉刺激相关 的行为学实验
4、光遗传/EEG/电生理集成
可以和光遗传技术 、EEG、EMG、电生理等技术联用
5、活动跑轮监测联用 
同步监测动物活动量,可增加呼吸代谢监控功能
6、持续注射给药、微透析联用
可实现清醒状态下连续给药、采血、 微透析实验
7、同步视频监测
同步的视频录像文件
8、咳嗽检测
通过软件自动监测咳嗽事件
9、各种动物呼吸检测
可定制各种大动物体积描记器, 如兔、 犬、 猴等
10、其它生理指标测量
可在麻醉或清醒状态下测量心电、血压、体温、心率等指标 ,可与植入式遥测设备联合使用;
如果您有特殊的实验需求 ,请联系我们具体商谈。
WBP与脑电肌电监测联用
同步监测EEG和EMG波形图、 呼吸信号等,可用于监测动物睡眠状态

选型规格
| 名称 | 型号 | 说明 | 单位 |
| 全身体积描记系统 | WBP-4M | 四通道,小鼠 | 套 |
| 全身体积描记系统 | WBP-4R | 四通道,大鼠 | 套 |
| 全身体积描记系统 | WBP-4MR | 四通道,大小鼠通用 | 套 |
| 全身体积描记系统 | WBP-8M | 八通道,小鼠 | 套 |
| 全身体积描记系统 | WBP-8R | 八通道,大鼠 | 套 |
| 全身体积描记系统 | WBP-8MR | 八通道,大小鼠通用 | 套 |
相关文献
[1] Zhou J W, Bai Y, Guo J Q, et al. Peroxiredoxin 4 as a switch regulating PTEN/AKT axis in alveolar macrophages activation[J]. Signal Transduction and Targeted Therapy (IF 52.7), 2025, 10(1): 352.
[2] Jiang C, Huang H, Yang X, et al. Targeting mitochondrial dynamics of morphin-responsive dopaminergic neurons ameliorates opiate withdrawal[J]. The Journal of Clinical Investigation (IF 19.5), 2024.
[3] Wang Z, Miao Z, Cao Z, et al. Mild Hyperthermia‐Assisted Coaxial Electrospun Nanofiber Patches for Epicutaneous Allergen‐Specific Immunotherapy[J]. Advanced Functional Materials (IF 19.0), 2025: e09955.
[4] Dong S, Fang H, Zhu J, et al. Inhalable siRNA Targeting IL-11 Nanoparticles Significantly Inhibit Bleomycin-Induced Pulmonary Fibrosis[J]. ACS nano (IF 15.8), 2025.
[5] Chen J, Wang J, Zheng W, et al. Brain–cervical lymph node crosstalk contributes to brain injury induced by subarachnoid hemorrhage in mice[J]. Nature Communications (IF 15.7), 2025, 16(1): 8551.
[6] Wang Y, Zhao Q, Zhang Q, et al. Targeted Delivery of CNS‐Specific Hesperidin as a Leptin Sensitizer for Treating Obesity‐Associated Sleep‐Disordered Breathing[J]. Advanced Science (14.1), 2025, 12(45): e06182.
[7] Wang Z, Lu X, Wu L, et al. Co-delivery of targeted hypoallergens and resiquimod powders using silk fibroin microneedles for effective allergen-specific immunotherapy[J]. Theranostics (IF 13.3), 2025, 15(16): 8096.
[8] Liu Y, Li G, Xiong A, et al. Fine particulate matter exacerbates asthma by activating STC2-mediated mitophagy through METTL3/YTHDF2-dependent m6A methylation[J]. Journal of Hazardous Materials (IF12.2), 2025: 138854.
[9] Li H, Liu S, Dai W, et al. Pressure-sensitive multivesicular liposomes as a smart drug-delivery system for high-altitude pulmonary edema[J]. Journal of Controlled Release (IF 11.5), 2024, 365: 301-316.
[10] Hou T, Zhu L, Zhang Y, et al. Lipid peroxidation triggered by the degradation of xCT contributes to gasdermin D-mediated pyroptosis in COPD[J]. Redox Biology (IF 10.1), 2024, 77: 103388.
[11] Luo L, Qin Z, Chen M, et al. γ-Aminobutyric acid–mediated parafacial zone: Integrating consciousness and respiratory control in sevoflurane anesthesia[J]. Anesthesiology (IF 9.1), 2025, 144(1): 116.
[12] Duan L L, Cai P, Li Z S, et al. Role of the supramammillary nucleus–medial septum glutamatergic pathway in mediating the effects of isoflurane anesthesia[J]. Anesthesiology (IF 9.1), 2025, 143(4): 944.
[13] Wei X, Cao X, Xu C, et al. Revolutionizing antibiotic therapy: polymyxin B and Fe2+-enriched liposomal carrier harness novel bacterial ferroptosis mechanism to combat resistant infections[J]. Journal of Pharmaceutical Analysis, 2025: 101293.
[14] Zhou W, Zhou Y, Zhang S, et al. Gut microbiota’s role in high-altitude cognitive impairment: The therapeutic potential of Clostridium sp. supplementation[J]. Science China Life Sciences, 2025, 68(4): 1132-1148.
[15] Liu J, Gao J, Xiong A, et al. Exploring Cistanche's therapeutic potential and molecular mechanisms in asthma treatment[J]. Phytomedicine, 2025, 136: 156265.
[16] Wang X, Zhao H, Lin W, et al. Panax notoginseng saponins ameliorate LPS-induced acute lung injury by promoting STAT6-mediated M2-like macrophage polarization[J]. Phytomedicine, 2025, 139: 156513.
[17] Jiang J, Ai S, Yuan C, et al. Dysfunction of cholinergic neuron in nucleus ambiguous aggravates sepsis-induced lung injury via a GluA1-dependment mechanism[J]. Brain, Behavior, and Immunity, 2025.
[18] Xu Z, Wu Y, Zhao X, et al. Integrating nontargeted metabolomics and RNA sequencing of dexamethasone-treated and untreated asthmatic mice reveals changes of amino acids and aminoacyl-tRNA in group 2 innate lymphoid cells[J]. International Journal of Biological Macromolecules, 2024, 283: 137630.
[19] Su J, Tu Y, Hu X, et al. Ambient PM2. 5 orchestrates M1 polarization of alveolar macrophages via activating glutaminase 1-mediated glutaminolysis in acute lung injury[J]. Environmental Pollution, 2025, 366: 125467.
[20] Shan C, Li W, Sun Y, et al. Benzo (a) pyrene exposure aggravates airway remodeling in asthma by activating AhR-GDF15 pathway in epithelial cells[J]. Environmental Pollution, 2025: 127557.
[21] Zhang M, Xu B, Li N, et al. All-Hydrocarbon Stapled Peptide Multifunctional Agonists at Opioid and Neuropeptide FF Receptors: Highly Potent, Long-Lasting Brain Permeant Analgesics with Diminished Side Effects[J]. Journal of Medicinal Chemistry, 2023.
[22] Long Y, Ang Y, Chen W, et al. Hydrogen alleviates impaired lung epithelial barrier in acute respiratory distress syndrome via inhibiting Drp1-mediated mitochondrial fission through the Trx1 pathway[J]. Free Radical Biology and Medicine, 2024, 218: 132-148.
[23] Wang Y, Liu X, Zhang Q, et al. Bioluminescence-optogenetics-mediated gene therapy in a sleep-disordered breathing mouse model[J]. Biomedicine & Pharmacotherapy, 2024, 178: 117159.
[24] Tabynov K, Tailakova E, Rakhmatullayeva G, et al. Comparison of rArt v 1-based sublingual and subcutaneous immunotherapy in a murine model of asthma[J]. npj Vaccines, 2025, 10(1): 66.
[25] Jiang Y, Zhang Y, Wang X, et al. Phosphatase PHLPP1 is an alveolar-macrophage-intrinsic transcriptional checkpoint controlling pulmonary fibrosis[J]. Cell Reports, 2025, 44(3).
[26] Liu S, Chu J, Yin X, et al. The adeno associated viral vectored Dp12S vaccine effective alleviation of asthma symptoms in mice[J]. npj Vaccines, 2025.
[27] Jin M, Liu J, Shao M, et al. Chitosan Nanoparticles for Pulmonary Delivery of Curcumin/Nintedanib to Treat Pulmonary Fibrosis[J]. International Journal of Nanomedicine, 2025: 12959-12973.
[28] Xiong A, He X, Liu S, et al. Oxidative stress-mediated activation of FTO exacerbates impairment of the epithelial barrier by up-regulating IKBKB via N6-methyladenosine-dependent mRNA stability in asthmatic mice exposed to PM2. 5[J]. Ecotoxicology and Environmental Safety, 2024, 272: 116067.
[29] Jia X, Liu S, Sun C, et al. METTL16 controls airway inflammations in smoking-induced COPD via regulating glutamine metabolism[J]. Ecotoxicology and Environmental Safety, 2025, 289: 117518.
[30] Lu X, Tan Z X, Yao Y X, et al. Inhaling arsenic aggravates airway hyperreactivity by upregulating PNEC-sourced 5-HT in OVA-induced allergic asthma[J]. Ecotoxicology and Environmental Safety, 2025, 290: 117764.
[31] Li Q, Ang Y, Zhou Q, et al. Coral calcium hydride promotes peripheral mitochondrial division and reduces AT-II cells damage in ARDS via activation of the Trx2/Myo19/Drp1 pathway[J]. Journal of Pharmaceutical Analysis, 2024: 101039.
[32] Zhang X, Hu T, Yu X, et al. Human umbilical cord mesenchymal stem cells improve lung function in chronic obstructive pulmonary disease rat model through regulating lung microbiota[J]. Stem Cells, 2024: sxae007.
[33] Akhtemova N, Sergazina A, Bolatbekov T, et al. The role of major allergens Art v 1 and Art v 3 in Artemisia pollen-induced asthma: a mouse model study[J]. Frontiers in Immunology, 2025, 16: 1590791.
[34] Tabynov K, Nedushenko I, Tailakova E, et al. Intranasal monoclonal antibodies to mugwort pollen reduce allergic inflammation in a mouse model of allergic rhinitis and asthma[J]. Frontiers in Immunology, 2025, 16: 1595659.
[35] Zhang Y, Jiang M, Xiong Y, et al. Integrated analysis of ATAC-seq and RNA-seq unveils the role of ferroptosis in PM2. 5-induced asthma exacerbation[J]. International Immunopharmacology, 2023, 125: 111209.
[36] Yao W, Huang S X, Zhang L, et al. Central amygdala somatostatin neurons modulate stress-induced sleep-onset insomnia[J]. Communications Biology, 2025, 8(1): 381.
[37] Lin Y, Wu Y, Ma F, et al. Exploration of the mechanism of Qi-Xian decoction in asthmatic mice using metabolomics combined with network pharmacology[J]. Frontiers in Molecular Biosciences, 2023, 10.
[38] Yang D, Li Y, Liu T, et al. IL‐1β promotes IL‐17A production of ILC3s to aggravate neutrophilic airway inflammation in mice[J]. Immunology, 2025, 176(1): 16-32.
[39] Zhang Y, Yang Y, Liang H, et al. Nobiletin, as a Novel PDE4B Inhibitor, Alleviates Asthma Symptoms by Activating the cAMP-PKA-CREB Signaling Pathway[J]. International Journal of Molecular Sciences, 2024, 25(19): 10406.
[40] Tsentsevitsky A N, Sibgatullina G V, Odoshivkina Y G, et al. Functional and Structural Changes in Diaphragm Neuromuscular Junctions in Early Aging[J]. International Journal of Molecular Sciences, 2024, 25(16): 8959.
[41] Ma J, Ni Z, Chen Q, et al. Exploring the kidney-tonifying effect of Qi-Xian decoction for asthma treatment by modulating the proliferation and migration of endogenous BMSCs[J]. Chinese Journal of Natural Medicines, 2025, 23(12): 100009.
[42] Liu K, Gu Y, Gu S, et al. Trim27 aggravates airway inflammation and oxidative stress in asthmatic mice via potentiating the NLRP3 inflammasome[J]. International Immunopharmacology, 2024, 134: 112199.
[43] Yuan Z, Wang Q, Tan Y, et al. Methylprednisolone alleviates lung injury in sepsis by regulating miR-151-5p/USP38 pathway[J]. International Immunopharmacology, 2024, 138: 112548.
[44] Wang Y, Peng M, Yang X, et al. Total alkaloids in Fritillaria cirrhosa D. Don alleviate OVA-induced allergic asthma by inhibiting M2 macrophage polarization[J]. Journal of Ethnopharmacology, 2025, 337: 118935.
[45] He J, Li J, Lin Q, et al. Anti-CD20 treatment attenuates Th2 cell responses: implications for the role of lung follicular mature B cells in the asthmatic mice[J]. Inflammation Research, 2024, 73(3): 433-446
[46] Liu Y, Tang A, Liu M, et al. Tuberostemonine may enhance the function of the SLC7A11/glutamate antiporter to restrain the ferroptosis to alleviate pulmonary fibrosis[J]. Journal of Ethnopharmacology, 2024, 318: 116983.
[47] Chen N, Xie Q M, Song S M, et al. Dexamethasone protects against asthma via regulating Hif-1α-glycolysis-lactate axis and protein lactylation[J]. International Immunopharmacology, 2024, 131: 111791.
[48] Li R, Zhang W, Huang B, et al. Dayuan Yin alleviates symptoms of HCoV-229E-induced pneumonia and modulates the Ras/Raf1/MEK/ERK pathway[J]. Natural Products and Bioprospecting, 2024, 14(1): 58.
[49] Wei M, Song M, Lin L, et al. Mechanism of Keke tablets in treating post-infectious cough following influenza A virus infection based on network pharmacology, molecular docking, molecular dynamics and in vivo experiments[J]. International Immunopharmacology, 2025, 162: 115123.
[50] Gong X T, Li Z S, Chen Z L, et al. Basal forebrain-ventral tegmental area glutamatergic pathway promotes emergence from isoflurane anesthesia in mice[J]. Journal of Neuroscience, 2025.
[51] Cheng S, Huang H, Zhang Z, et al. Pulmonary delivery of excipient-free tobramycin DPIs for the treatment of Pseudomonas aeruginosa lung infection with CF[J]. Frontiers in Pharmacology, 2025, 16: 1528905.
[52] Yan C X, Sun K, Zhu X, et al. Oligomeric proanthocyanidins mitigate acute lung injury by inhibiting NETs and inflammation via the gut-lung axis[J]. Journal of Functional Foods, 2024, 118: 106272.
[53] Liu Y, Wang X, Wei J, et al. Comprehensive profiling of amino acids and derivatives in biological samples: A robust UHPLC-MS/MS method for investigating acute lung injury[J]. Journal of Chromatography A, 2024, 1721: 464816.
[54] Zakyrjanova G F, Tsentsevitsky A N, Matigorova V A, et al. Cholesterol-lowering treatment suppresses neuromuscular transmission via presynaptic mechanism at the mouse diaphragm muscle[J]. Neurochemical Research, 2025, 50(5): 1-23.
[55] Zhang J, Huang M, Zhou J, et al. Bmi-1 overexpression mitigates vitamin D deficiency-induced pulmonary fibrosis via TIME pathway[J]. Cellular Signalling, 2025: 112180.
[56] Sun G, Hao W, Li Q, et al. Therapeutic and prophylactic effects of Qipian on COPD in mice: the role of lung and gut microbiota[J]. Microbiology Spectrum, 2025: e01969-24.
[57] Khaziev A N, Tsentsevitsky A N, Fedorov N S, et al. Exogenous nanomolar zinc ion (Zn2+) as a negative modulator of neuromuscular transmission via presynaptic mechanism in mouse diaphragm[J]. BioMetals, 2025: 1-24.
[58] Fu X, Wang L T, Xu Q, et al. Necroptosis Inhibition Preserves Diaphragm Function in Experimental Sepsis[J]. The American Journal of Pathology, 2025, 195(12): 2373-2386.
[59] Zheng R, Yang W, Yan J, et al. DNAH10 mutation cause primary ciliary dyskinesia with defects of IDAf complex assembly and lung fibrosis manifestation[J]. Orphanet Journal of Rare Diseases, 2025, 20(1): 469.
[60] Chen X Y, Wang L, Ma X, et al. Development of fentany-specific monoclonal antibody (mAb) to antagonize the pharmacological effects of fentany[J]. Toxicology and Applied Pharmacology, 2024, 486: 116918.
[61] Han C H, Zhang P X, Liu Y, et al. Inhibition of renin-angiotensin system attenuates type I alveolar epithelial cell necroptosis in rats after hyperbaric hyperoxic exposure[J]. Frontiers in Medicine, 2025, 12: 1521729.
[62] Yin, Lijun; Guan, Zhenbiao; Xu, Jiajun; Yu, Xuhua; Wen, Yukun; Wang, Shifeng; Liu, Wenwu. Assessment of hyperbaric hyperoxic lung injury in rats. Medical Gas Research 15(1):p 129-131, March 2025. | DOI: 10.4103/mgr.MEDGASRES-D-24-00030
[63] Yin L, Wen Y, Liang Z, et al. Lung function and blood gas of rats after different protocols of hypobaric exposure[J]. Medical Gas Research, 2025, 15(1): 180-187.
[64] Aisanjiang M, Dai W, Wu L, et al. Ameliorating lung fibrosis and pulmonary function in diabetic mice: Therapeutic potential of mesenchymal stem cell[J]. Biochemical and Biophysical Research Communications, 2024, 737: 150495.
[65] Jia X, Sun J, Zhuo Q, et al. Effect of the NLRP3 inflammasome on increased hypoxic ventilation response after CIH exposure in mice[J]. Respiratory Physiology & Neurobiology, 2024, 321: 104204.
[66] Kuznetsova E A, Fedorov N S, Zakyrjanova G F, et al. 25-Hydroxycholesterol as a negative regulator of diaphragm muscle contractions via estrogen receptor and Ca2+-dependent pathway[J]. Histochemistry and Cell Biology, 2025, 163(1): 1-15.
[67] Wu Y, Dai T, Qin J, et al. Regulation of Dendritic Cell Function by RFX5 through Interaction with HDAC2 and Its Mechanism in Pediatric Asthma[J]. Biocell, 2025, 49(4).
[68] Xu X, Nie X, Zhang W, et al. A brainstem circuit controls cough-like airway defensive behaviors in mice[J]. bioRxiv, 2024: 2024.09. 08.611924.
[69] Li W, Wu L, Lu X, et al. Prenatal Benzo [A] Pyrene Exposure Exacerbates Ova-Induced Asthma in Offspring Mice[J]. Available at SSRN 5265037.
*我公司可以根据客户的特殊应用、特殊需求提供功能定制服务,也可以提供相关的实验服务,详情请来电咨询。
风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。
- 作者
- 内容
- 询问日期
文献和实验[1] Zhou J W, Bai Y, Guo J Q, et al. Peroxiredoxin 4 as a switch regulating PTEN/AKT axis in alveolar macrophages activation[J]. Signal Transduction and Targeted Therapy (IF 52.7), 2025, 10(1): 352.
[2] Jiang C, Huang H, Yang X, et al. Targeting mitochondrial dynamics of morphin-responsive dopaminergic neurons ameliorates opiate withdrawal[J]. The Journal of Clinical Investigation (IF 19.5), 2024.
[3] Wang Z, Miao Z, Cao Z, et al. Mild Hyperthermia‐Assisted Coaxial Electrospun Nanofiber Patches for Epicutaneous Allergen‐Specific Immunotherapy[J]. Advanced Functional Materials (IF 19.0), 2025: e09955.
[4] Dong S, Fang H, Zhu J, et al. Inhalable siRNA Targeting IL-11 Nanoparticles Significantly Inhibit Bleomycin-Induced Pulmonary Fibrosis[J]. ACS nano (IF 15.8), 2025.
[5] Chen J, Wang J, Zheng W, et al. Brain–cervical lymph node crosstalk contributes to brain injury induced by subarachnoid hemorrhage in mice[J]. Nature Communications (IF 15.7), 2025, 16(1): 8551.
[6] Wang Y, Zhao Q, Zhang Q, et al. Targeted Delivery of CNS‐Specific Hesperidin as a Leptin Sensitizer for Treating Obesity‐Associated Sleep‐Disordered Breathing[J]. Advanced Science (14.1), 2025, 12(45): e06182.
[7] Wang Z, Lu X, Wu L, et al. Co-delivery of targeted hypoallergens and resiquimod powders using silk fibroin microneedles for effective allergen-specific immunotherapy[J]. Theranostics (IF 13.3), 2025, 15(16): 8096.
[8] Liu Y, Li G, Xiong A, et al. Fine particulate matter exacerbates asthma by activating STC2-mediated mitophagy through METTL3/YTHDF2-dependent m6A methylation[J]. Journal of Hazardous Materials (IF12.2), 2025: 138854.
[9] Li H, Liu S, Dai W, et al. Pressure-sensitive multivesicular liposomes as a smart drug-delivery system for high-altitude pulmonary edema[J]. Journal of Controlled Release (IF 11.5), 2024, 365: 301-316.
[10] Hou T, Zhu L, Zhang Y, et al. Lipid peroxidation triggered by the degradation of xCT contributes to gasdermin D-mediated pyroptosis in COPD[J]. Redox Biology (IF 10.1), 2024, 77: 103388.
[11] Luo L, Qin Z, Chen M, et al. γ-Aminobutyric acid–mediated parafacial zone: Integrating consciousness and respiratory control in sevoflurane anesthesia[J]. Anesthesiology (IF 9.1), 2025, 144(1): 116.
[12] Duan L L, Cai P, Li Z S, et al. Role of the supramammillary nucleus–medial septum glutamatergic pathway in mediating the effects of isoflurane anesthesia[J]. Anesthesiology (IF 9.1), 2025, 143(4): 944.
[13] Wei X, Cao X, Xu C, et al. Revolutionizing antibiotic therapy: polymyxin B and Fe2+-enriched liposomal carrier harness novel bacterial ferroptosis mechanism to combat resistant infections[J]. Journal of Pharmaceutical Analysis, 2025: 101293.
[14] Zhou W, Zhou Y, Zhang S, et al. Gut microbiota’s role in high-altitude cognitive impairment: The therapeutic potential of Clostridium sp. supplementation[J]. Science China Life Sciences, 2025, 68(4): 1132-1148.
[15] Liu J, Gao J, Xiong A, et al. Exploring Cistanche's therapeutic potential and molecular mechanisms in asthma treatment[J]. Phytomedicine, 2025, 136: 156265.
[16] Wang X, Zhao H, Lin W, et al. Panax notoginseng saponins ameliorate LPS-induced acute lung injury by promoting STAT6-mediated M2-like macrophage polarization[J]. Phytomedicine, 2025, 139: 156513.
[17] Jiang J, Ai S, Yuan C, et al. Dysfunction of cholinergic neuron in nucleus ambiguous aggravates sepsis-induced lung injury via a GluA1-dependment mechanism[J]. Brain, Behavior, and Immunity, 2025.
[18] Xu Z, Wu Y, Zhao X, et al. Integrating nontargeted metabolomics and RNA sequencing of dexamethasone-treated and untreated asthmatic mice reveals changes of amino acids and aminoacyl-tRNA in group 2 innate lymphoid cells[J]. International Journal of Biological Macromolecules, 2024, 283: 137630.
[19] Su J, Tu Y, Hu X, et al. Ambient PM2. 5 orchestrates M1 polarization of alveolar macrophages via activating glutaminase 1-mediated glutaminolysis in acute lung injury[J]. Environmental Pollution, 2025, 366: 125467.
[20] Shan C, Li W, Sun Y, et al. Benzo (a) pyrene exposure aggravates airway remodeling in asthma by activating AhR-GDF15 pathway in epithelial cells[J]. Environmental Pollution, 2025: 127557.
[21] Zhang M, Xu B, Li N, et al. All-Hydrocarbon Stapled Peptide Multifunctional Agonists at Opioid and Neuropeptide FF Receptors: Highly Potent, Long-Lasting Brain Permeant Analgesics with Diminished Side Effects[J]. Journal of Medicinal Chemistry, 2023.
[22] Long Y, Ang Y, Chen W, et al. Hydrogen alleviates impaired lung epithelial barrier in acute respiratory distress syndrome via inhibiting Drp1-mediated mitochondrial fission through the Trx1 pathway[J]. Free Radical Biology and Medicine, 2024, 218: 132-148.
[23] Wang Y, Liu X, Zhang Q, et al. Bioluminescence-optogenetics-mediated gene therapy in a sleep-disordered breathing mouse model[J]. Biomedicine & Pharmacotherapy, 2024, 178: 117159.
[24] Tabynov K, Tailakova E, Rakhmatullayeva G, et al. Comparison of rArt v 1-based sublingual and subcutaneous immunotherapy in a murine model of asthma[J]. npj Vaccines, 2025, 10(1): 66.
[25] Jiang Y, Zhang Y, Wang X, et al. Phosphatase PHLPP1 is an alveolar-macrophage-intrinsic transcriptional checkpoint controlling pulmonary fibrosis[J]. Cell Reports, 2025, 44(3).
[26] Liu S, Chu J, Yin X, et al. The adeno associated viral vectored Dp12S vaccine effective alleviation of asthma symptoms in mice[J]. npj Vaccines, 2025.
[27] Jin M, Liu J, Shao M, et al. Chitosan Nanoparticles for Pulmonary Delivery of Curcumin/Nintedanib to Treat Pulmonary Fibrosis[J]. International Journal of Nanomedicine, 2025: 12959-12973.
[28] Xiong A, He X, Liu S, et al. Oxidative stress-mediated activation of FTO exacerbates impairment of the epithelial barrier by up-regulating IKBKB via N6-methyladenosine-dependent mRNA stability in asthmatic mice exposed to PM2. 5[J]. Ecotoxicology and Environmental Safety, 2024, 272: 116067.
[29] Jia X, Liu S, Sun C, et al. METTL16 controls airway inflammations in smoking-induced COPD via regulating glutamine metabolism[J]. Ecotoxicology and Environmental Safety, 2025, 289: 117518.
[30] Lu X, Tan Z X, Yao Y X, et al. Inhaling arsenic aggravates airway hyperreactivity by upregulating PNEC-sourced 5-HT in OVA-induced allergic asthma[J]. Ecotoxicology and Environmental Safety, 2025, 290: 117764.
[31] Li Q, Ang Y, Zhou Q, et al. Coral calcium hydride promotes peripheral mitochondrial division and reduces AT-II cells damage in ARDS via activation of the Trx2/Myo19/Drp1 pathway[J]. Journal of Pharmaceutical Analysis, 2024: 101039.
[32] Zhang X, Hu T, Yu X, et al. Human umbilical cord mesenchymal stem cells improve lung function in chronic obstructive pulmonary disease rat model through regulating lung microbiota[J]. Stem Cells, 2024: sxae007.
[33] Akhtemova N, Sergazina A, Bolatbekov T, et al. The role of major allergens Art v 1 and Art v 3 in Artemisia pollen-induced asthma: a mouse model study[J]. Frontiers in Immunology, 2025, 16: 1590791.
[34] Tabynov K, Nedushenko I, Tailakova E, et al. Intranasal monoclonal antibodies to mugwort pollen reduce allergic inflammation in a mouse model of allergic rhinitis and asthma[J]. Frontiers in Immunology, 2025, 16: 1595659.
[35] Zhang Y, Jiang M, Xiong Y, et al. Integrated analysis of ATAC-seq and RNA-seq unveils the role of ferroptosis in PM2. 5-induced asthma exacerbation[J]. International Immunopharmacology, 2023, 125: 111209.
[36] Yao W, Huang S X, Zhang L, et al. Central amygdala somatostatin neurons modulate stress-induced sleep-onset insomnia[J]. Communications Biology, 2025, 8(1): 381.
[37] Lin Y, Wu Y, Ma F, et al. Exploration of the mechanism of Qi-Xian decoction in asthmatic mice using metabolomics combined with network pharmacology[J]. Frontiers in Molecular Biosciences, 2023, 10.
[38] Yang D, Li Y, Liu T, et al. IL‐1β promotes IL‐17A production of ILC3s to aggravate neutrophilic airway inflammation in mice[J]. Immunology, 2025, 176(1): 16-32.
[39] Zhang Y, Yang Y, Liang H, et al. Nobiletin, as a Novel PDE4B Inhibitor, Alleviates Asthma Symptoms by Activating the cAMP-PKA-CREB Signaling Pathway[J]. International Journal of Molecular Sciences, 2024, 25(19): 10406.
[40] Tsentsevitsky A N, Sibgatullina G V, Odoshivkina Y G, et al. Functional and Structural Changes in Diaphragm Neuromuscular Junctions in Early Aging[J]. International Journal of Molecular Sciences, 2024, 25(16): 8959.
[41] Ma J, Ni Z, Chen Q, et al. Exploring the kidney-tonifying effect of Qi-Xian decoction for asthma treatment by modulating the proliferation and migration of endogenous BMSCs[J]. Chinese Journal of Natural Medicines, 2025, 23(12): 100009.
[42] Liu K, Gu Y, Gu S, et al. Trim27 aggravates airway inflammation and oxidative stress in asthmatic mice via potentiating the NLRP3 inflammasome[J]. International Immunopharmacology, 2024, 134: 112199.
[43] Yuan Z, Wang Q, Tan Y, et al. Methylprednisolone alleviates lung injury in sepsis by regulating miR-151-5p/USP38 pathway[J]. International Immunopharmacology, 2024, 138: 112548.
[44] Wang Y, Peng M, Yang X, et al. Total alkaloids in Fritillaria cirrhosa D. Don alleviate OVA-induced allergic asthma by inhibiting M2 macrophage polarization[J]. Journal of Ethnopharmacology, 2025, 337: 118935.
[45] He J, Li J, Lin Q, et al. Anti-CD20 treatment attenuates Th2 cell responses: implications for the role of lung follicular mature B cells in the asthmatic mice[J]. Inflammation Research, 2024, 73(3): 433-446
[46] Liu Y, Tang A, Liu M, et al. Tuberostemonine may enhance the function of the SLC7A11/glutamate antiporter to restrain the ferroptosis to alleviate pulmonary fibrosis[J]. Journal of Ethnopharmacology, 2024, 318: 116983.
[47] Chen N, Xie Q M, Song S M, et al. Dexamethasone protects against asthma via regulating Hif-1α-glycolysis-lactate axis and protein lactylation[J]. International Immunopharmacology, 2024, 131: 111791.
[48] Li R, Zhang W, Huang B, et al. Dayuan Yin alleviates symptoms of HCoV-229E-induced pneumonia and modulates the Ras/Raf1/MEK/ERK pathway[J]. Natural Products and Bioprospecting, 2024, 14(1): 58.
[49] Wei M, Song M, Lin L, et al. Mechanism of Keke tablets in treating post-infectious cough following influenza A virus infection based on network pharmacology, molecular docking, molecular dynamics and in vivo experiments[J]. International Immunopharmacology, 2025, 162: 115123.
[50] Gong X T, Li Z S, Chen Z L, et al. Basal forebrain-ventral tegmental area glutamatergic pathway promotes emergence from isoflurane anesthesia in mice[J]. Journal of Neuroscience, 2025.
[51] Cheng S, Huang H, Zhang Z, et al. Pulmonary delivery of excipient-free tobramycin DPIs for the treatment of Pseudomonas aeruginosa lung infection with CF[J]. Frontiers in Pharmacology, 2025, 16: 1528905.
[52] Yan C X, Sun K, Zhu X, et al. Oligomeric proanthocyanidins mitigate acute lung injury by inhibiting NETs and inflammation via the gut-lung axis[J]. Journal of Functional Foods, 2024, 118: 106272.
[53] Liu Y, Wang X, Wei J, et al. Comprehensive profiling of amino acids and derivatives in biological samples: A robust UHPLC-MS/MS method for investigating acute lung injury[J]. Journal of Chromatography A, 2024, 1721: 464816.
[54] Zakyrjanova G F, Tsentsevitsky A N, Matigorova V A, et al. Cholesterol-lowering treatment suppresses neuromuscular transmission via presynaptic mechanism at the mouse diaphragm muscle[J]. Neurochemical Research, 2025, 50(5): 1-23.
[55] Zhang J, Huang M, Zhou J, et al. Bmi-1 overexpression mitigates vitamin D deficiency-induced pulmonary fibrosis via TIME pathway[J]. Cellular Signalling, 2025: 112180.
[56] Sun G, Hao W, Li Q, et al. Therapeutic and prophylactic effects of Qipian on COPD in mice: the role of lung and gut microbiota[J]. Microbiology Spectrum, 2025: e01969-24.
[57] Khaziev A N, Tsentsevitsky A N, Fedorov N S, et al. Exogenous nanomolar zinc ion (Zn2+) as a negative modulator of neuromuscular transmission via presynaptic mechanism in mouse diaphragm[J]. BioMetals, 2025: 1-24.
[58] Fu X, Wang L T, Xu Q, et al. Necroptosis Inhibition Preserves Diaphragm Function in Experimental Sepsis[J]. The American Journal of Pathology, 2025, 195(12): 2373-2386.
[59] Zheng R, Yang W, Yan J, et al. DNAH10 mutation cause primary ciliary dyskinesia with defects of IDAf complex assembly and lung fibrosis manifestation[J]. Orphanet Journal of Rare Diseases, 2025, 20(1): 469.
[60] Chen X Y, Wang L, Ma X, et al. Development of fentany-specific monoclonal antibody (mAb) to antagonize the pharmacological effects of fentany[J]. Toxicology and Applied Pharmacology, 2024, 486: 116918.
[61] Han C H, Zhang P X, Liu Y, et al. Inhibition of renin-angiotensin system attenuates type I alveolar epithelial cell necroptosis in rats after hyperbaric hyperoxic exposure[J]. Frontiers in Medicine, 2025, 12: 1521729.
[62] Yin, Lijun; Guan, Zhenbiao; Xu, Jiajun; Yu, Xuhua; Wen, Yukun; Wang, Shifeng; Liu, Wenwu. Assessment of hyperbaric hyperoxic lung injury in rats. Medical Gas Research 15(1):p 129-131, March 2025. | DOI: 10.4103/mgr.MEDGASRES-D-24-00030
[63] Yin L, Wen Y, Liang Z, et al. Lung function and blood gas of rats after different protocols of hypobaric exposure[J]. Medical Gas Research, 2025, 15(1): 180-187.
[64] Aisanjiang M, Dai W, Wu L, et al. Ameliorating lung fibrosis and pulmonary function in diabetic mice: Therapeutic potential of mesenchymal stem cell[J]. Biochemical and Biophysical Research Communications, 2024, 737: 150495.
[65] Jia X, Sun J, Zhuo Q, et al. Effect of the NLRP3 inflammasome on increased hypoxic ventilation response after CIH exposure in mice[J]. Respiratory Physiology & Neurobiology, 2024, 321: 104204.
[66] Kuznetsova E A, Fedorov N S, Zakyrjanova G F, et al. 25-Hydroxycholesterol as a negative regulator of diaphragm muscle contractions via estrogen receptor and Ca2+-dependent pathway[J]. Histochemistry and Cell Biology, 2025, 163(1): 1-15.
[67] Wu Y, Dai T, Qin J, et al. Regulation of Dendritic Cell Function by RFX5 through Interaction with HDAC2 and Its Mechanism in Pediatric Asthma[J]. Biocell, 2025, 49(4).
[68] Xu X, Nie X, Zhang W, et al. A brainstem circuit controls cough-like airway defensive behaviors in mice[J]. bioRxiv, 2024: 2024.09. 08.611924.
[69] Li W, Wu L, Lu X, et al. Prenatal Benzo [A] Pyrene Exposure Exacerbates Ova-Induced Asthma in Offspring Mice[J]. Available at SSRN 5265037.
起死回生!猪死亡 6 小时后全身「复活」,耶鲁团队时隔三年再获新突破
通过给死去的猪全身安置灌注系统,能够恢复猪多个器官组织和细胞的功能。经过灌注处理,使猪接近刚死后不久的状态,且猪的心脏也会开始重新跳动! 图 1. 来源 Nature 一、安装灌注系统,恢复猪全身血液循环和代谢特征 科研的魅力是于细微处见知著,根据前期研究,Sestan 教授认为:「大脑是最容易因缺血受影响的器官。如果我们能在死去的大脑中,恢复一些特定的细胞的功能,那或许也可以在其他器官中做到相同的事情。」事实证明,Sestan 教授的论断是充满智慧与远见的,他的想法得到了充分印证
Neuron:胡霁 / 袁逖飞 / 许涛发现「麻醉牛奶」有望给抑郁症患者带来福音
上个世纪 70 年代初,一种乳白色的药物被发现具有稳定、舒适的镇静作用,即丙泊酚,被麻醉医生形象的称为「牛奶」。丙泊酚自 1986 年正式进入临床使用以来,既可用于全身麻醉,也适用于手术时间短的小操作或检查,是静脉麻醉药中当之无愧的「王者」,每年服务全球亿万患者。其发明者约翰·格伦为此获得了有诺贝尔奖风向标之称的「美国拉斯克奖」临床医学类奖项。令人惊奇的是,丙泊酚的临床使用不仅带来了催眠、镇静与遗忘,还常常让入睡的患者产生美梦,使得他们心情愉悦,产生放松感。 2023 年 3 月 13 日
Cell Reports:上海科大朱焕乎团队揭示肠道营养信号如何指挥动物全身的发育进程
中的营养和生长信号转变成细胞的发育信号,来维持细胞的生长。 然而,迄今为止绝大多数研究仅仅是在体外培养的哺乳动物细胞中进行的,未在生理条件下的动物个体发育过程中得到验证;此外,在动物中,对营养环境变化的感知通常局限于个别组织,其如何将营养信号跨组织传递给全身并协调整体发育命运依然不甚清楚。 葡萄糖神经酰胺(Glucosylceramide)是一类集氨基酸,脂肪酸和糖类为一体的特殊脂质,在人类和动物中非常保守。缺乏葡萄糖神经酰胺会导致包括人及线虫,果蝇和小鼠等出现早期发育停滞并死亡的表型,但是其中的分子










