丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Text Mining

互联网

696
One of the fastest-growing fields in bioinformatics is text mining: the application of natural language processing techniques to problems of knowledge management and discovery, using large collections of biological or biomedical text such as MEDLINE. The techniques used in text mining range from the very simple (e.g., the inference of relationships between genes from frequent proximity in documents) to the complex and computationally intensive (e.g., the analysis of sentence structures with parsers in order to extract facts about protein —protein interactions from statements in the text).
This chapter presents a general introduction to some of the key principles and challenges of natural language processing, and introduces some of the tools available to end-users and developers. A case study describes the construction and testing of a simple tool designed to tackle a task that is crucial to almost any application of text mining in bioinformatics —identifying gene/protein names in text and mapping them onto records in an external database.
ad image
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序