• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Methoxyoxalamido Chemistry in the Synthesis of Tethered Phosphoramidites and Functionalized Oligonucleotides

        互联网

        1400
        • Abstract
        • Table of Contents
        • Materials
        • Figures
        • Literature Cited

        Abstract

         

        A general approach to phosphoramidites tethered with single and multiple linkers through the use of methoxyoxalamido (MOX) chemistry is described. The approach utilizes readily available and inexpensive primary aliphatic amino alcohols and diamines to produce a rich and diverse variety of tethered phosphoramidites. Furthermore, the use of MOX chemistry in a modular fashion enables fairly rapid assembly of compound tethers. All novel phosphoramidites described have been successfully used in automated syntheses of 5??modified oligonucleotides.

        Keywords: methoxyoxalamido (MOX) chemistry; tethered phosphoramidites; 5??modified oligonucleotides

             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Table of Contents

        • Basic Protocol 1: Preparation of Phosphoramidites Tethered with Single Linkers
        • Alternate Protocol 1: Preparation of Phosphoramidites Tethered with Multiple Linkers
        • Basic Protocol 2: Synthesis, Deprotection, and Purification of Oligonucleotides Derivatized with Tethered Phosphoramidites
        • Commentary
        • Literature Cited
        • Figures
        • Tables
             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Materials

        Basic Protocol 1: Preparation of Phosphoramidites Tethered with Single Linkers

          Materials
        • trans ‐4‐Amino‐1‐cyclohexanol hydrochloride (97%; Aldrich)
        • Triethylamine (Et 3 N), ≥99%
        • Methanol (MeOH), HPLC grade
        • Dimethyl oxalate, 99% (Aldrich)
        • Diethyl ether, anhydrous
        • Chloroform (CHCl 3 ), HPLC grade
        • 60 Å silica gel, 200 to 400 mesh (EM Science)
        • 5′‐Amino‐5′‐deoxythymidine (Berry & Associates, http://www.berryassoc.com or Fidelity Systems, http://www.fidelitysystems.com)
        • Aliphatic primary diamines
          • Ethylenediamine (EDA), ≥99.5% (Aldrich) for S.3a
          • 2,4,8,10‐Tetraoxaspiro[5.5]undecane‐3,9‐dipropanamine (TUDA), 97% (Aldrich) for S.4a
          • 4,7,10‐Trioxa‐1,13‐tridecanediamine (TTDD), ≥98% (Aldrich) for S.5a and S.6a
        • Aliphatic primary amino alcohols
          • 6‐Amino‐1‐hexanol (AH), 97% (Aldrich) for S.11a
          • 2‐(2‐Aminoethoxy)ethanol (AEE), 98% (Aldrich) for S.10a
        • Dichloromethane (CH 2 Cl 2 ), HPLC grade
        • N ,N ‐Dimethylformamide (DMF), anhydrous
        • Pyridine, anhydrous, 99.8% (Aldrich)
        • 4‐Monomethoxytrityl chloride (MMTr‐Cl; ChemGenes)
        • Saline solution: 25% to 30% (w/v) aqueous NaCl
        • Na 2 SO 4 , reagent grade, anhydrous
        • Pentane, HPLC grade
        • 4,4′‐Dimethoxytrityl chloride (DMTr‐Cl; ChemGenes)
        • Tetrazole, dried
        • Argon gas
        • 2‐Cyanoethyl‐N ,N ,N ′,N ′‐tetraisopropylphosphorodiamidite (ChemGenes)
        • 10% (w/v) aqueous sodium hydrogen carbonate (NaHCO 3 )
        • Dichloromethane (CH 2 Cl 2 ), anhydrous
        • Ethyl acetate (EtOAc), HPLC grade
        • Toluene, anhydrous
        • Phosphorus pentoxide (P 2 O 5 )
        • Rotary evaporator equipped with a vacuum pump or water aspirator (5 to 10 Torr)
        • Buchner funnel, 140‐mL capacity with glass frit (porosity 4 to 8 µm)
        • Paper filters (coarse porosity)
        • 4 × 40–cm sintered glass columns
        • Vacuum oil pump (0.05 to 0.5 Torr)
        • Separatory funnel
        • Thin‐layer chromatography (TLC) Kieselgel 60 F 254 plates (EM Science)
        • I 2 ‐silica chamber
        • 254‐nm UV lamp
        • Heat gun
        • Additional reagents and equipment for TLC ( appendix 3D ) and column chromatography ( appendix 3E )

        Alternate Protocol 1: Preparation of Phosphoramidites Tethered with Multiple Linkers

          Materials
        • Tethered phosphoramidites ( S.3d‐S.14d ; see protocol 1 and protocol 2 )
        • Acetonitrile (CH 3 CN), anhydrous, DNA synthesis grade
        • Standard 2′‐deoxyribonucleoside phosphoramidites (Transgenomic)
        • 0.5 M tetrazole in CH 3 CN (Glen Research) or 0.25 M 5‐ethylthio‐1H ‐tetrazole (ETT, Glen Research)
        • Ethanolamine (EA), ≥99% (Aldrich)
        • 10% (w/v) LiClO 4 in ethanol (EtOH)
        • Ethanol (EtOH), 200 proof
        • 7 M urea
        • 15% (w/v) polyacrylamide gel ( appendix 3B ) containing 7 M urea in 0.5× TBE electrophoresis buffer ( appendix 2A )
        • 0.25 M triethyl ammonium bicarbonate (TEAB), aqueous solution
        • 1.7‐mL microcentrifuge tubes
        • 70°C incubator or water bath
        • Microcentrifuge
        • Speedvac evaporator (Savant)
        • Sephadex G‐25 NAP‐10 columns (Pharmacia)
        • Lyophilizer
        • Water aspirator or vacuum pump (5 to 10 Torr)
        • Additional reagents and equipment for automated solid‐phase oligonucleotide synthesis ( appendix 3C ), purification of oligonucleotides (units 10.1 , 10.4 , 10.5 , 10.7 & APPENDIX 3.NaN ), and determination of molecular mass (unit 10.1 )
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Figures

        •   Figure 4.29.1 Synthetic pathway for phosphoramidites tethered with a single linker. MOX, methoxyoxalamido; DMTr, dimethoxytrityl; MMTr, monomethoxytrityl.
          View Image
        •   Figure 4.29.2 Synthetic pathway to phosphoramidites tethered with multiple linkers. MOX, methoxyoxalamido; DMTr, dimethoxytrityl; MMTr, monomethoxytrityl; n = number of cycles.
          View Image
        •   Figure 4.29.3 Initial MOX precursors.
          View Image
        •   Figure 4.29.4 Phosphoramidites and precursors with simple or multiple aminated linkers. MMTr, monomethoxytrityl.
          View Image
        •   Figure 4.29.5 Phosphoramidites and precursors with simple or multiple hydroxylated linkers. DMTr, dimethoxytrityl.
          View Image
        •   Figure 4.29.6 PAGE analysis of crude 5′‐modified T10 oligonucleotides. Lane 1 of each gel corresponds to the unmodified T10 oligonucleotide. The other lanes correspond to oligonucleotides modified at the 5′ terminus with the following phosphoramidites: S.3d (A2), S.4d (A3), S.5d (A4), S.6d (A5), S.8d (A6), S.7d (A7), S.9d (A8), S.10d (B2), S.11d (B3), S.13d (B4), S.12d (B5), S.14d (B6).
          View Image

        Videos

        Literature Cited

        Literature Cited
           Bannwarth, W. 1988. Solid phase synthesis of oligonucleotides containing phosphoramidate internucleotide linkages and their specific chemical cleavage. Helv. Chim. Acta 71:1517‐1527.
           Jaschke, A., Furste, J.P., Nordhoff, E., Hillenkamp, F., Cech, D., and Erdmann, V.A. 1994. Synthesis and properties of oligodeoxyribonucleotide‐polyethylene glycol conjugates. Nucl. Acids Res. 22:4810‐4817.
           Polushin, N.N. 2000. The precursor strategy: Terminus methoxyoxalamido modifiers for single and multiple functionalization of oligodeoxyribonucleotides. Nucl. Acids Res. 28:3125‐3133.
           Polushin, N.N., Morocho, A.M., Chen, B.C., and Cohen, J.S. 1994. On the rapid deprotection of synthetic oligonucleotides and analogs. Nucl. Acids Res. 22:639‐645.
           Reddy, M.P., Hanna, N.B., and Farooqui, F. 1994. Fast cleavage and deprotection of oligonucleotides. Tetrahedron Lett. 35:4311‐4314.
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library
         
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序