• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        PAM: Prediction Analysis for Microarrays

        互联网

        1585

         

         
         

        PAM: Prediction Analysis for Microarrays
        Class Prediction and Survival Analysis for Genomic Expression Data Mining

         

        Features:

        • Performs sample classification from gene expression data,
          via "nearest shrunken centroid method'' of Tibshirani, Hastie, Narasimhan and Chu (2002):
          "
          Diagnosis of multiple cancer types by shrunken centroids of gene expression " (PNAS website).
          PNAS 2002 99:6567-6572 (May 14).

           

        • For survival outcomes, implements 'supervised principal components' method. See

          Semi-supervised methods for predicting patient survival from gene expression papers (Bair and Tibshirani) PLOS Biology, and Prediction by supervised principal components (Bair, Hastie, Paul, Tibshirani) Stanford tech report

        • Version 2.1 (Sep 14, 2005) featuring False discovery rates FDRs
        • Version 2.0 (Mar 7, 2005) featuring: FDRs and survival analysis via supervised principal components,
        • Estimates prediction error via cross-validation
        • Provides a list of significant genes whose expression characterizes each diagnostic class
        • Works with data from both cDNA and oligo microarrays. Can also be applied to protein expression data and SNP chip data.
        • What is nearest shrunken centroids?
          How does it compare to other classifiers?
        • Developed at Stanford University Labs. Free for all users.
        • Yahoo newsgroup
        • Two versions:

                       Excel Add-in: Registration page; Installation guide; Manual;
                      PAM for the R package    Superpc for the R package

         

         

        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序