Attachment of Nitroxide Spin Labels to Nucleic Acids for EPR
互联网
- Abstract
- Table of Contents
- Materials
- Figures
- Literature Cited
Abstract
In addition to X?ray, NMR, and FRET, electron paramagnetic resonance (EPR) can be applied to elucidate the structure of different macromolecular systems and determine local surroundings of paramagnetic centers in DNA and RNA. This technique permits structural characterization as well as dynamic structural changes of macromolecular systems. To do so, free radicals with good stability must be introduced. Here, the site?directed spin labeling of DNA and RNA based on the Sonogashira cross?coupling reaction is described. First, the appropriate building blocks, either 5?iodo?substituted pyrimidine deoxy? or ribo?nucleoside phosphoramidites are prepared and incorporated by solid?phase synthesis. Following this, the protected oligonucleotides are ?on column? reacted with the acetylenic nitroxide spin labels and subsequently purified. Applications of this technique for duplexes, hairpins, and riboswitches in vitro and in cell are described. Curr. Protoc. Nucleic Acid Chem. 49:7.17.1?7.17.40. © 2012 by John Wiley & Sons, Inc.
Keywords: site?directed spin labeling (SDSL); nitroxide; on?column synthesis; Sonogashira cross coupling
Table of Contents
- Introduction
- Basic Protocol 1: Synthesis of 15N‐Marked Spin Label TPA
- Basic Protocol 2: Synthesis of DNA Building Blocks for Spin Label Attachment
- Basic Protocol 3: Synthesis of RNA Building Blocks for Spin Label Attachment
- Basic Protocol 4: DNA Synthesis without Interruption
- Basic Protocol 5: RNA Synthesis without Interuption
- Alternate Protocol 1: RNA Synthesis with Interruption
- Basic Protocol 6: Sonogashira Cross‐Coupling Reaction on the Solid Phase
- Basic Protocol 7: Probe Preparation and EPR Measurements
- Reagents and Solutions
- Commentary
- Literature Cited
- Figures
- Tables
Materials
Basic Protocol 1: Synthesis of 15N‐Marked Spin Label TPA
Materials
Basic Protocol 2: Synthesis of DNA Building Blocks for Spin Label Attachment
Materials
Basic Protocol 3: Synthesis of RNA Building Blocks for Spin Label Attachment
Materials
Basic Protocol 4: DNA Synthesis without Interruption
Materials
Basic Protocol 5: RNA Synthesis without Interuption
Materials
Alternate Protocol 1: RNA Synthesis with Interruption
Materials
Basic Protocol 6: Sonogashira Cross‐Coupling Reaction on the Solid Phase
Materials
|
Figures
-
Figure 7.17.1 Synthesis of the 15 N‐nitroxide TPA undefined. View Image -
Figure 7.17.2 a. TiPBS‐Cl, 80%; b. I2 , CuI, CH2 I2 , isopentyl nitrite, 84%; c. EtOH/NH3 , 78%; d. TEA‐3HF, 86%. View Image -
Figure 7.17.3 Synthesis of the 5‐iodo‐cytidine phosphoramidite: a. Pyridine, C12 H28 OSi2 Cl2 , 0°C, overnight, 99%; b. N ‐iodosuccinimide, DMF, 50°C, 4 hr, 73%; c. N , N ‐Dimethyl‐formamide‐dimethylacetal, DMF, 50°C, overnight, 58%; d. Tris(2‐acetoxyethyl)orthoformate, pyridinium p ‐toluene‐sulfonate, 4‐tert‐butyl‐dimethyl‐siloxy‐3‐penten‐2‐one, DCM, room temperature, 48 hr, 85%; e. TEMED⋅HF, 0°C, 2 hr, quantitative; f. diisopropylamine, BzHCl, CH2 Cl2 , 0°C, 83%; g. 1 H ‐Tetrazole, methyl‐ N , N , N ′, N ′‐tetraisopropylphosphordiamidite, 0°C to room temperature, 76%. View Image -
Figure 7.17.4 Sonogashira cross‐coupling reaction. View Image -
Figure 7.17.5 Photo of the equipment for Sonogashira cross‐coupling reaction. View Image -
Figure 7.17.6 Available nitroxides. #, deuterated compound; *, 15 N‐labeled compound. View Image -
Figure 7.17.7 Synthesis of the nitroxide TEMPA 2. View Image -
Figure 7.17.8 DNA building blocks. These are the iodo‐modified phosphoramidites for the DNA synthesis for Sonogashira cross‐coupling chemistry. View Image -
Figure 7.17.9 RNA building blocks. These are the different phosphoramidite building blocks for RNA synthesis by ACE or TBDMS chemistry that can be used for Sonogashira cross‐coupling chemistry. View Image -
Figure 7.17.10 Correlation of PELDOR and MD distances for RNAs1‐6 (open squares) and DNAs 1‐5 (open circles). View Image -
Figure 7.17.11 Schematic secondary structure diagram of the cUUCGg tetraloop showing nucleotide conformations and critical interactions determined by NMR and MD‐simulation. View Image -
Figure 7.17.12 (A ) Free; (B ) bound secondary structure of aptamer; (C ) neomycin‐B. View Image -
Figure 7.17.13 CD‐spectrum of double‐labeled oligonucleotides. View Image -
Figure 7.17.14 2‐D‐NMR data before and after the reduction of the spin label (Wurm et al., ). View Image -
Figure 7.17.15 Secondary structures (with spin‐labeled nucleotides in red), baseline‐corrected PELDOR time traces, and distance distributions for double‐labeled 14‐mer cUUCGg tetraloop hairpin RNA (upper panel) and the 27‐mer neomycin‐sensing riboswitch (lower panel). In‐cell data after different incubation times are compared with in vitro data (green). View Image -
Figure 7.17.16 Secondary structure (with spin‐labeled nucleotides in red), baseline corrected PELDOR time traces and distance distribution for 12‐bp double‐labeled DNA in vitro (green), and in‐cell (incubation time indicated in legend). Data were fitted with two Gaussians (Krstic et al., ). View Image
Videos
Literature Cited
Literature Cited | |
Böhme, S., Steinhoff, H.‐J., and Klare, J.P. 2010. Accessing the distance range of interest in biomolecules: Site‐directed spin labeling and DEER spectroscopy. Spectroscopy 24:283‐288. | |
Cheong, C., Varani, G., and Tinoco, I. Jr. 1990. Solution structure of an unusually stable RNA hairpin, 5′GGAC(UUCG)GUCC. Nature 346:680‐682 | |
Couet, W.R., Brasch, R.C., Sosnovsky, C., Lukszo, J., Prakash, I., Gnewech, C.T., and Tozer, T.N. 1985. Influence of chemical structure of nitroxyl spin labels on their reduction by ascorbic acid. Tetrahedron 41:1165‐1172. | |
Dehmlow, E.V. and Lissel, M. 1980. Anwendungen der Phasentransfer‐katalyse, 14. Darstellung von Alkinen aus Alkylhalogeniden mit festem Kalium‐tert‐butylat und Kronenether. Liebigs Ann. Chem. 1:1‐13. | |
Dellinger, D.J., Timar, Z., Myerson, J., Sierzchala, A.B., Turner, J., Ferreira, F., Kupihar, Z., Dellinger, G., Hill, K.W., Powell, J.A., Sampson, J.R., and Caruthers, M.H. 2011. Streamlined process for the chemical synthesis of RNA using 2′‐O‐thionocarbamate‐protected nucleoside phosphoramidites in the solid phase. J. Am. Chem. Soc. 113:11540‐11556. | |
Ding, P., Wunnicke, D., Steinhoff, H.‐J., and Seela, F. 2010. Site‐directed spin‐labeling of DNA by the azide‐slkyne “Click” reaction: Nanometer distance measurements on 7‐deaza‐2′‐deoxyadenosine and 2′‐deoxyuridine nitroxide conjugates spatially separated or linked to a “dA‐dT” base pair. Chem. Eur. J. 16:14385‐14396. | |
Duchardt‐Ferner, E., Weigand, J.E., Ohlenschläger, O., Schmidtke, S.R., Suess, B., and Wöhnert, J. 2010. Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch. Angew. Chem. Int. Ed. 49:6216‐6219. | |
Frolow, O., Bode, B.E., Prisner, T.F., and Engels, J.W. 2007. The synthesis of EPR differentiable spinlabels and their coupling to uridine. Nucleosides Nucleotides Nucleic Acids 26:655‐659. | |
Frolow, O., Bats, J.W., and Engels, J.W. 2009. 3‐Ethynyl‐2,2,5,5‐tetramethyl‐1‐oxyl‐3‐pyrroline. Acta Crystallographica E65:o1848. | |
Gannett, P.M., Darian, E., Powell, J.H, and Johnson, E.M. 2001. A short procedure for synthesis of 4‐ethynyl‐2,2,6,6‐tetramethyl‐3,4‐dehydroxy‐piperidine‐1‐oxyl nitroxyde. Synth. Commun. 31:2137‐2141. | |
Godt, A., Franzen, C., Veit, S., Enkelmann, V., Pannier, M., and Jeschke, G. 2000. EPR probes with well defined, long distances between two or three unpaired electrons. J. Org. Chem. 65:7575‐7582. | |
Groesbeek, M. and Lugtenburg, J. 1995. Synthesis of nitroxide containing polyenes: Two commercially modified retinals and their interaction with bacetriorhodopsin. Recl. Trav. Chim. Pays‐Bas. 114:403‐409. | |
Hayakawa, Y., Hirose, M., and Noyori, R. 1993. O‐Allyl protection of guanine and thymine residues in oligodeoxyribonucleotides. J. Org. Chem. 58:5551‐5555. | |
Hubbell, W., Cafiso, D.S., and Altenbach, C. 2000. Identifying conformational changes with site‐directed spin labeling. Nature Struct. Biol. 7:735‐739. | |
Janeba, Z., Francon, P., and Robins, M.J. 2003. Efficient syntheses of 2‐chloro‐2′‐deoxyadenosine (cladribine) from 2′‐deoxyguanosine. J. Org. Chem. 68:989‐992. | |
Jeschke, G., Pannier, M., Godt, A., and Spiess, H.W. 2000. Dipolar spectroscopy and spin alignment in electron paramagnetic resonance. Chem. Phys. Lett. 331:243‐252. | |
Jeschke, G., Zimmermann, H., and Godt, A. 2006. Isotope selection in distance measurements between nitroxides J. Magn. Reson. 180:137‐146. | |
Kelemen, P., Lugtenburg, J., and Klumperman, B.J. 2003. 15N NMR spectroscopy of labeled alkoxyamines. 15N‐labeled model compounds for nitroxide‐trapping studies in free‐radical (Co)polymerization. J. Org. Chem. 68:7322‐7328. | |
Krstic, I., Frolow, O., Sezer, D., Endeward, B., Weigand, J.E., Suess, B., Engels, J.W., and Prisner, T.F. 2010. PELDOR spectroscopy reveals preorganization of the neomycin‐responsive riboswitch tertiary structure. J. Am. Chem. Soc. 132:1454‐1455. | |
Krstic, I., Haensel, R., Romainczyk, O., Engels, J.W., Doetsch, V., and Prisner, T.F. 2011. Long‐range distance measurement on nucleic acids in cells by pulsed EPR spectroscopy. Angew. Chem. Int. Ed. 50:6782‐6785 | |
Margraf, D., Bode, B.E., Marko, A., Schiemann, O., and Prisner, T.F. 2007. Conformational flexibility of nitroxide biradicals determined by X‐band PELDOR experiments. Mol. Phys. 105:2153‐2160. | |
Matteucci, M.D. and Caruthers, M.H. 1981. Studies on nucleotide chemistry IV. Synthesis of deoxyoligonucleotides on a polymer support. J. Am. Chem. Soc. 103:3185‐3191. | |
Milov, A.D., Salikhov, K.M., and Shirov, M.D. 1981. Application of the double resonance method to electron spin echo in a study of the spatial distribution of paramagnetic centers in solids. Sov. Phys. Solid State 23:975‐982. | |
Murray, R.W., Iyanar, K., Chen, J., and Wearing, J. 1996. Oxidation of organonitrogen compounds by the methyltrioxorhenium‐hydrogen peroxide system. Tetrahedron Lett. 37:805‐808. | |
Muth, A. and Engels, J.W. 1995. Force field calculations of RNA‐tetraloops. J. Mol. Model. 1:97‐98. | |
Nesvadba, P., Bugnon, L., and von Büren, M. 2004. Process for the oxidation of secondary amines into the corresponding nitroxides. Patent no. WO 2004/085397. | |
Nozinovic, S., Fürtig, B., Jonker, H.R.A., Richter, C., and Schwalbe, H. 2010. High‐resolution NMR structure of an RNA model system: The 14‐mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res. 38:683‐694. | |
Obeid, S., Yulikov, M., Jeschke, G., and Marx, A. 2008. Enzymatic synthesis of multiple spin‐labeled DNA. Angew. Chem. Int. Ed. 47:6782‐6785. | |
Ogilvie, K.K., Sadana, K.L., Thompson, E.A., Qiulliam, M.A., and Westmore, J.B. 1974. The use of silyl groups in protecting the hydroxyl functions of ribonucleosides. Tetrahedron Lett. 33:2861‐2863. | |
Piton, N., Schiemann, O., Mu, Y., Stock, G., Prisner, T.F., and Engels, J.W. 2005. Synthesis of spin‐labeled RNAs for long range distance measurements by PELDOR. Nucleosides Nucleotides Nucleic Acids 24:771‐775. | |
Piton, N., Mu, Y., Stock, G., Prisner, T.F., Schiemann, O., and Engels, J.W. 2007. Base‐specific spin‐labeling of RNA for structure determination. Nucleic Acids Res. 35:3128‐3143. | |
Romainczyk, O., Endeward, B., Prisner, T.F., and Engels, J.W. 2011. RNA‐DNA hybrid structure determined by EPR and enzyme recognition. Mol. Biosyst. 7:1050‐1052. | |
Scaringe, S.A. 2000. Orthoester Protecting Groups. U.S. Patent no. 6,111,086. | |
Scaringe, S.A., Kitchen, D., Kaiser, R., and Marshall, W.S. 2004. Preparation of 5′‐silyl‐2′‐othoester ribonucleosides for use in oligoribonucleotide synthesis. Curr. Protoc. Nucleic Acid Chem. 16:2.10.1‐2.10.15. | |
Schiemann, O. and Prisner, T.F. 2007. Long range distance determinations in biomacromolecules by EPR spectroscopy. Q. Rev. Biophys. 40:1‐53. | |
Schiemann, O., Piton, N., Mu, Y., Stock, G., Engels, J.W., and Prisner, T.F. 2004. A PELDOR‐based nanometer distance ruler for oligonucleotides. J. Am. Chem. Soc. 126:5722‐5729. | |
Schiemann, O., Piton, N., Plackmeyer, J., Bode, B., Prisner, T., and Engels, J.W. 2007. Spin labeling of oligonucleotides with the nitroxid TPA and use of PELDOR, a pulse EPR method, to measure intermolecular distances. Nat. Protoc. 2:904‐923. | |
Sicoli, G., Wachowius, F., Bennati, M., and Höbartner, C. 2010. Probing secondary structures of spin‐labeled RNA by pulsed EPR spectroscopy. Angew. Chem. Int. Ed. 49:6443‐6447. | |
Strube, T., Schiemann, O., McMillan, F., Prisner, T., and Engels, J.W. 2001. A new facile method for spin‐labeling of oligonucleotides. Nucleosides Nucleotides Nucleic Acids 20:1271‐1274. | |
Weigand, J.E., Sanchez, M., Gunnesch, E.B., Zeiher, S., Schroeder, R., and Suess, B. 2008. Screening for engineered neomycin riboswitches that control translation initiation. RNA 14:89‐97. | |
Wautelet, P., Le Moigne, J., Videva, V., and Turek, P. 2003. Spin exchange interaction through phenylene‐ethynylene bridge in diradicals based on iminonitroxide and nitronylnitroxide radical derivatives. 1. Experimental investigation of the through‐bond spin exchange coupling. J. Org. Chem. 68:8025‐8036. | |
Woese, C.R., Winker, S., and Gutell, R.R. 1990. Architecture of ribosomal RNA: Constraints on the sequence of “tetra‐loops”. Proc. Nat. Acad. Sci.U.S.A. 87:8467‐8471. | |
Wurm, J.P., Meyer, B., Bahr, U., Held, M., Frolow, O., Kötter, P., Engels, J.W., Heckel, A., Karas, M., Entian, K.D., and Wöhnert, J. 2010. The ribosome assembly factor Nep1 responsible for Bowen‐Conradi syndrome is a pseudouridine‐N1‐specific methyltransferase. Nucleic Acids Res. 38:2387‐2398. | |
Yamada, K., Kinoshita, Y., Yamasaki, T., Sadasue, H, Mito, F., Nagai, M., Matsumoto, S., Aso, M., Suemune, H., Sakai, K., and Utsumi, H. 2008. Synthesis of nitroxyl radicals for overhauser‐enhanced magnetic resonance imaging. Arch. Pharm. Chem. Life Sci. 341:548‐553. |