• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Using Coevolution to Predict ProteinProtein Interactions

        互联网

        410
        Bioinformatic methods to predict protein–protein interactions (PPI) via coevolutionary analysis have �positioned themselves to compete alongside established in vitro methods, despite a lack of understanding for the underlying molecular mechanisms of the coevolutionary process. Investigating the alignment of coevolutionary predictions of PPI with experimental data can focus the effective scope of prediction and lead to better accuracies. A new rate-based coevolutionary method, MMM, preferentially finds obligate interacting proteins that form complexes, conforming to results from studies based on coimmunoprecipitation coupled with mass spectrometry. Using gold-standard databases as a benchmark for accuracy, MMM surpasses methods based on abundance ratios, suggesting that correlated evolutionary rates may yet be better than coexpression at predicting interacting proteins. At the level of protein domains, �coevolution is difficult to detect, even with MMM, except when considering small-scale experimental data involving proteins with multiple domains. Overall, these findings confirm that coevolutionary �methods can be confidently used in predicting PPI, either independently or as drivers of coimmunoprecipitation experiments.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序