佚名 乙酰胆碱(Acetylcholine,简写为Ach)是许多外周神经如运动神经、植物性神经系统的节前纤维和付交感神经节后纤维的兴奋性神经递质。 (一)合成和贮存 Ach由胆碱和乙酰CoA所合成。胆碱乙酰化酶(choline acetylase)催化下列反应: 由于胆碱乙酰化酶位于胞浆内,因此设想Ach是先在胞浆内合成,然后进入囊泡贮存。平时囊泡中和胞浆中的 ...
佚名 儿茶酚胺类(Catecholamines)是指含有邻苯二酚基本结构的胺类。体内具有生物活性的儿茶酚胺包括多巴胺(dopamineDA)、去甲肾上腺素(norepinephrinenoradrenalineNE)和肾上腺素(epinephrineadrenalinE)。它们的结构如下。 去甲肾上腺素和肾上腺素既是肾上腺髓质所分泌的激素,又是交感和中枢神经系统中 ...
佚名 5-羟色胺(5-ydroxytryptamine 简写5-HT)又名血清紧张素(serotonin),最早是从血清中发现的。中枢神经系统存在着5-�色胺能神经元,但在脊椎动物的外周神经系统中至今尚未发现有5-羟色胺能神经元。 由于5-羟色胺不能透过血脑屏障,所以中枢的5-羟色胺是脑内合成的,与外周的5-羟色胺不是一个来源。用组织化学的方法证明,5-羟色胺能神 ...
佚名 脑内到处都存在着氨基酸。过去只认为它们是合成蛋白质的原料,或是蛋白质分解的产物。近年来,注意到某些氨基酸在中枢的突触传递中起着递质的作用。而且发现,凡是中性氨基酸,如γ�氨基丁酸、甘氨酸、β�丙氨酸等对中枢神经元表现抑制作用,而酸性氨基酸如谷氨酸、天门冬氨酸则表现为兴奋作用。 有一些小分子肽类在中枢神经系统中也具有神经递质同的作用。1975年发现的脑啡肽(e ...
佚名 分子生物学是从分子水平研究生命本质为目的的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正与其它学科广泛交叉与渗透的重要前沿领域。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广泛的前景。 所谓在分子水平上研究生命的本质主要是指对遗传、生 ...
佚名 分子生物学主要包含以下三部分研究内容: 1 核酸的分子生物学 核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递信息,因此分子遗传学(moleculargenetics)是其主要组成部分。由于50年代以来的迅速发展。该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核/基因组的结构、遗传信息的 ...
佚名 分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以纛信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同专长的科学家的共同努力。它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。 生物化学与分子生物学关系最为密切。两者同在我国教委和科委颁布的一个二级学科中,称为“生物化学与分子生物学”,但两者还是区别的 ...
佚名 分子生物学的发展大致可分为三个阶段。 (一)准备和酝酿阶段 19世纪后期到20世纪50年代初,是现代分子生物学诞生的准备和酝酿阶段。在这一阶段产生了两点对生命本质的认识上的重大突破。 确定了蛋白质是生命的主要物质基础。 19世纪末Buchner兄弟证明酵母无细胞提取液能使糖发酵产生酒精,第一次提出酶(enzyme)的名称,酶是生物催化剂。20世纪20- ...
佚名 1868年,瑞士的内科医生Friedrich Miescher从外科医院包扎伤口的绷带上的脓细胞核中提取到一种富含磷元素的酸性化合物,将其称为核质(nuclein);后来他又从鲭鱼精子中分离出类似的物质,并指出它是由一种碱性蛋白质与一种酸性物质组成的,此酸性物质即是现在所知的核酸(nucleic acid)。1944年Oswald AveryColin Mac ...
佚名 核酸是生物体内的高分子化合物,包括DNA和RNA两大类。 一、元素组成 组成核酸的元素有C、H、O、N、P等,与蛋白质比较,其组成上有两个特点:一是核酸一般不含元素S,二是核酸中P元素的含量较多并且恒定,约占9~10%。因此,核酸定量测定的经典方法,是以测定P含量来代表核酸量。 二、化学组成与基本单位 核酸经水解可得到很多核苷酸,因此核苷酸是核酸的基本 ...
佚名 核酸是由很多单核苷酸聚合形成的多聚核苷酸(polynucleotide),DNA的一级结构即是指四种核苷酸(dAMP、dCMP、dGMP、dTMP)按照一定的排列顺序,通过磷酸二酯键连接形成的多核苷酸,由于核苷酸之间的差异仅仅是碱基的不同,故又可称为碱基顺序。核苷酸之间的连接方式是:一个核苷酸的5′位磷酸与下一位核苷酸的3′-OH形成3′,5′磷酸二酯键,构成 ...
佚名 自然界绝大多数生物体的遗传信息贮存在DNA的核苷酸排列顺序中。DNA是巨大的生物高分子,一般将细胞内遗传信息的携带者�染色体所包含的DNA总体称为基因组(genome)。同一物种的基因组DNA含量总是恒定的,不同物种间基因组大小和复杂程度则差异极大,一般讲,进化程度越高的生物体其基因组构成越大、越复杂,见(表15-2)。�表15-2 某些有代表性的生物体内DN ...
佚名 随着对基因认识的不断深入,发现在同种生物的不同个体之间,尽管其蛋白质产物的结构和功能完全相同或仅存在着细微的差异,但在DNA水平却存在着差异,尤其在不编码蛋白质的区域以及没有重要调节功能的区域表现更为突出。这种不影响生物体表型的DNA突变被称为中性突变。 分子生物学技术的不断发展已使得从DNA水平直接分析这类突变成为可能。 目前应用较多且成熟的方法是限制性 ...
佚名 DNA的一级结构决定了基因的功能,欲想解释基因的生物学含义,首先必须知道其DNA顺序。因此DNA序列分析(DNa sequencing)是分子遗传学中一项既重要又基本的课题。 1986年由美国学者提出的,目前正在实施的人类基因组计划(human genome project),则是要通过对人类基因组3×109bp全序列的序列分析和人类基因的染色体图谱制定达到 ...
佚名 1953年,Watson和Crick提出了著名的DNA分子的双螺旋结构模型,揭示了遗传信息是如何储存在DNA分子中,以及遗传性状何以在世代间得以保持。这是生物学发展的重大里程碑。 在DNA双螺旋结构模型建立之前,早在1868年,Miescher已经从脓细胞提取到核酸与蛋白质的复合物,当时称为核素(nuclein)。但核酸在生命活动中的重要地位,却迟至本世纪5 ...
佚名 早在1948年,Buchanan等采用同位素标记不同化合物喂养鸽子,并测定排出的尿酸中标记原子的位置的同位素示踪技术,证实合成嘌呤的前身物为:氨基酸(甘氨酸、天门冬氨酸、和谷氨酰胺)、CO2和一碳单位(N10甲酰FH4,N、N10-甲炔FH4)(图8-3)。图8-3 嘌呤环合成的原料来源 随后,由Buchanan和Greenberg等进一步搞清了嘌呤核苷酸的 ...
佚名 嘧啶核苷酸合成也有两条途径:即从头合成和补救合成。本节主要论述其从头合成途径。 相关新闻 ...
佚名 大多数细胞更新其核酸(尤其是RNA)过程中,要分解核酸产生核苷和游离碱基。细胞利用游离碱基或核苷重新合成相应核苷酸的过程称为补救合成(saluage pathway)。与从头合成不同,补救合成过程较简单,消耗能量亦较少。由二种特异性不同的酶参与嘌呤核苷酸的补救合成。腺嘌呤磷酸核糖转移酶(Adenine phosphoribosyl transteraseAPR ...
佚名 与嘌呤合成相比,嘧啶核苷酸的从头合成较简单,同位素示踪证明,构成嘧啶环的N1、C4、C5及C6均由天冬氨酸提供,C3来源于CO2,N3来源于谷氨酰胺。(图8-7)图8-7 嘧啶环合成的原料来源 嘧啶核苷酸的合成是先合成嘧啶环,然后再与磷酸核糖相连而成的。 1.尿嘧啶核苷酸(UMP)的合成,由6步反应完成:(图8-8)图8-8 UMP的生物合成 (1)合成 ...
佚名 DNA与RNA有两方面不同:(1)其核苷酸中戊糖为2�脱氧核糖而非核糖。(2)含有胸腺嘧啶碱基,不含尿嘧啶碱基。图8-11 大肠杆菌硫氧化还原蛋白的320残基亚单位结构图 (一)脱氧核糖的生成: 脱氧核糖核苷酸是通过相应核糖核苷酸还原,以H取代其核糖分子中C2上的羟基而生成,而非从脱氧核糖从头合成。此还原作用是在二磷酸核苷酸(NDP)水平上进行的。(此处N ...