细胞系(株)免费含str鉴定
文献支持

细胞系(株)免费含str鉴定

收藏
  • 询价
  • 中乔新舟已认证
  • 中国
  • ZQ00001
  • 2025年12月28日
    avatar
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 询价记录
    • 文献和实验
    • 技术资料
    • 英文名

      cells

    • 库存

      大量

    • 细胞类型

      细胞系

    • 品系

      human

    • 组织来源

      human

    • 相关疾病

    • 物种来源

      咨询销售

    • 免疫类型

    • 细胞形态

      咨询销售

    • 器官来源

      human

    • 运输方式

      T25瓶运输

    • 年限

      5-10年

    • 生长状态

      贴壁生长

    • 规格

      5 x 10^5 cells/vial

    更多咨询点击此处可跳转企业微信客服端

    细胞系(株)免费含str鉴定
    中乔新舟提供常用实验细胞系,包括肿瘤细胞、正常细胞、 耐药细胞、标记细胞,永生化细胞等各种细胞类型。所有人源细胞系提供STR鉴定报告,鼠源细胞系提供种属鉴定,有位点比对鼠源细胞提供准确的STR鉴定。细胞代次为引种后3-5代左右。所有的细胞进行批量冻存,严格的代次管控,且经过无菌和无支原体检测,质量可靠。细胞系均提供配套完全培养基,组合使用,省时省力,技术全程指导,售后无忧。 

    细胞系(株)免费含str鉴定


    热销细胞系+推荐完培

    细胞系(株)免费含str鉴定


    STR验证报告主要项目:
    细胞系(株)免费含str鉴定


    STR鉴定报告样式: 
    细胞系(株)免费含str鉴定

    上海中乔新舟生物科技有限公司主要依托复旦大学、同济大学等上海地区多家著名高校,拥有一支富有经验的开发团队,专业从事细胞及细胞周边产品的研发、生产、销售及科研技术服务。我们以成为的生物医学产品供应商为目标,致力为细胞生物学、分子生物学、医学及药学等生命科学领域提供专业服务。
    上海中乔新舟生物科技有限公司产品线比较丰富:现有美国Sciencell(原代细胞及配套全能培养基、细胞培养试剂、检测试剂盒、生长因子等)、新一代无血清培养基、年产1000万毫升内蒙古合作牛血清生产基地等。

    特色产品:原代细胞、细胞株、ELISA试剂盒、澳洲美洲血清、国产血清、各种培养基。  
    仪器设备:激光片层扫描显微镜(活细胞高速荧光显微成像解决方案)、3D细胞大规模扩增系统 。                      
    特色服务:转基因白鼠、动物模型、慢病毒介导的基因过表达和沉默。

     

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    • 作者
    • 内容
    • 询问日期
    图标文献和实验
    该产品被引用文献

    用了我们产品发表的部分文献

    货号产品名称论文标题DOI发表时间期刊影响因子原文链接
    ZQ0098RAW264.7 cellshUC-EVs-ATO reduce the severity of acute GVHD by resetting inflammatory macrophages toward the M2 phenotype10.1186/s13045-022-01315-22022-07-21Journal of Hematology & Oncology23.168https://jhoonline.biomedcentral.com/articles/10.1186/s13045-022-01315-2
    ZQ0141NR8383 cellsSmart µ-Fiber Hydrogels with Macro-Porous Structure for Sequentially Promoting Multiple Phases of Articular Cartilage Regeneration10.1002/adfm.2021133802022-02-25ADVANCED FUNCTIONAL MATERIALS18.808https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202113380
    ZQ0277BMMSCsSmart µ-Fiber Hydrogels with Macro-Porous Structure for Sequentially Promoting Multiple Phases of Articular Cartilage Regeneration10.1002/adfm.2021133802022-02-25ADVANCED FUNCTIONAL MATERIALS18.808https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202113380
    ZQ-599F12K  mediumSmart µ-Fiber Hydrogels with Macro-Porous Structure for Sequentially Promoting Multiple Phases of Articular Cartilage Regeneration10.1002/adfm.2021133802022-02-25ADVANCED FUNCTIONAL MATERIALS18.808https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202113380
     αMEMSmart µ-Fiber Hydrogels with Macro-Porous Structure for Sequentially Promoting Multiple Phases of Articular Cartilage Regeneration10.1002/adfm.2021133802022-02-25ADVANCED FUNCTIONAL MATERIALS18.808https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202113380
    ZQ0938ChondrocytesCharge-Guided Micro/Nano-Hydrogel Microsphere for Penetrating Cartilage Matrix10.1002/adfm.2021076782021-09-07ADVANCED FUNCTIONAL MATERIALS18.808https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202107678
    ZQ0108B16F10 melanoma cellsSilk‐Inspired In Situ Hydrogel with Anti‐Tumor Immunity Enhanced Photodynamic Therapy for Melanoma and Infected Wound Healing10.1002/adfm.2021013202021-02-23ADVANCED FUNCTIONAL MATERIALS18.808https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202101320
     Lewis lung cancer cellsMelatonin enhances radiofrequency-induced NK antitumor immunity, causing cancer metabolism reprogramming and inhibition of multiple pulmonary tumor development10.1038/s41392-021-00745-72021-09-01Signal Transduction and Targeted Therapy18.187https://www.nature.com/articles/s41392-021-00745-7
    ZQ0450HFF cellsProgrammable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA10.1038/s41467-022-31740-32022-07-09Nature Communications17.694https://www.nature.com/articles/s41467-022-31740-3
    RZQ0013U87MG-RFP cellsCarbonized paramagnetic complexes of Mn (II) as contrast agents for precise magnetic resonance imaging of sub-millimeter-sized orthotopic tumors10.1038/s41467-022-29586-w2022-04-11Nature Communications17.694https://www.nature.com/articles/s41467-022-29586-w
    ZQ-1311Complete culture medium of mammary epithelial cellsNear-infrared heptamethine cyanine dye-based nanoscale coordination polymers with intrinsic nucleus-targeting for low temperature photothermal therapy10.1016/j.nantod.2020.1009102020-06-24Nano Today16.907https://www.sciencedirect.com/science/article/pii/S1748013220300797
    ZQ0096NIH 3T3 cell linesOmniphobic ZIF-8@Hydrogel Membrane by Microfluidic-Emulsion-Templating Method for Wound Healing10.1002/adfm.2019093892020-02-12ADVANCED FUNCTIONAL MATERIALS16.836https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201909389
    ZQ0108B16F10 melanoma cellsBifunctional Cx43 Mimic Peptide Grafted Hyaluronic Acid Hydrogels Inhibited Tumor Recurrence and Stimulated Wound Healing for Postsurgical Tumor Treatment10.1002/adfm.2020047092020-09-16ADVANCED FUNCTIONAL MATERIALS16.836https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202004709
    ZQ0098RAW 264.7 cellsBifunctional Cx43 Mimic Peptide Grafted Hyaluronic Acid Hydrogels Inhibited Tumor Recurrence and Stimulated Wound Healing for Postsurgical Tumor Treatment10.1002/adfm.2020047092020-09-16ADVANCED FUNCTIONAL MATERIALS16.836https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202004709
    ZQ0465mouse bone marrow-derived mesenchymal stem cells (MSCs)Cells-Micropatterning Biomaterials for Immune Activation and Bone Regeneration10.1002/advs.2022006702022-04-28Advanced Science16.806https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.202200670
    ZQ0050SH-SY5Y cellsThe Protective Effects of Osteocyte-Derived Extracellular Vesicles Against Alzheimer's Disease Diminished with Aging10.1002/advs.2021053162022-05-04Advanced Science16.806https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.202105316
    LZQ0032CT26lucTailoring Chemoimmunostimulant Bioscaffolds for Inhibiting Tumor Growth and Metastasis after Incomplete Microwave Ablation10.1021/acsnano.1c088262021-12-09ACS Nano15.881https://pubs.acs.org/doi/abs/10.1021/acsnano.1c08826
    ZQ0449KYSE150 cellsPIWIL2 interacting with IKK to regulate autophagy and apoptosis in esophageal squamous cell carcinoma10.1038/s41418-020-00725-42021-01-19CELL DEATH AND DIFFERENTIATION15.828https://www.nature.com/articles/s41418-020-00725-4
    ZQ0064BxPC-3 cellsÅngstrom‐Scale Silver Particles as a Promising Agent for Low‐Toxicity Broad‐Spectrum Potent Anticancer Therapy10.1002/adfm.2018085562019-02-27ADVANCED FUNCTIONAL MATERIALS15.621https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201808556
    ZQ0003A549 cellsÅngstrom‐Scale Silver Particles as a Promising Agent for Low‐Toxicity Broad‐Spectrum Potent Anticancer Therapy10.1002/adfm.2018085562019-02-27ADVANCED FUNCTIONAL MATERIALS15.621https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201808556
    ZQ0040PC-3 cellsÅngstrom‐Scale Silver Particles as a Promising Agent for Low‐Toxicity Broad‐Spectrum Potent Anticancer Therapy10.1002/adfm.2018085562019-02-27ADVANCED FUNCTIONAL MATERIALS15.621https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201808556
    ZQ0254AsPC-1 cellsÅngstrom‐Scale Silver Particles as a Promising Agent for Low‐Toxicity Broad‐Spectrum Potent Anticancer Therapy10.1002/adfm.2018085562019-02-27ADVANCED FUNCTIONAL MATERIALS15.621https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201808556
    ZQ0068HeLa cellsPhotodegradation of carbon dots cause cytotoxicity10.1038/s41467-021-21080-z2021-02-05Nature Communications14.919https://www.nature.com/articles/s41467-021-21080-z
    ZQ0022HepG2 cellsPhotodegradation of carbon dots cause cytotoxicity10.1038/s41467-021-21080-z2021-02-05Nature Communications14.919https://www.nature.com/articles/s41467-021-21080-z
    ZQ0034HEK-293 cellsPhotodegradation of carbon dots cause cytotoxicity10.1038/s41467-021-21080-z2021-02-05Nature Communications14.919https://www.nature.com/articles/s41467-021-21080-z
    ZQ0109H22 cellsTumor-killing nanoreactors fueled by tumor debris can enhance radiofrequency ablation therapy and boost antitumor immune responses10.1038/s41467-021-24604-92021-07-14Nature Communications14.919https://www.nature.com/articles/s41467-021-24604-9
    ZQ0068HeLa cellsBacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms10.1038/s41467-022-28920-62022-03-10Nature Communications14.919https://www.nature.com/articles/s41467-022-28920-6
    ZQ0033HEK-293T cellsBacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms10.1038/s41467-022-28920-62022-03-10Nature Communications14.919https://www.nature.com/articles/s41467-022-28920-6
    ZQ0797Marc-145 cellsBacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms10.1038/s41467-022-28920-62022-03-10Nature Communications14.919https://www.nature.com/articles/s41467-022-28920-6
    ZQ0031LO2 cellsBacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms10.1038/s41467-022-28920-62022-03-10Nature Communications14.919https://www.nature.com/articles/s41467-022-28920-6
    ZQ0071MCF-7 cellsBacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms10.1038/s41467-022-28920-62022-03-10Nature Communications14.919https://www.nature.com/articles/s41467-022-28920-6
     H-DMEMBacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms10.1038/s41467-022-28920-62022-03-10Nature Communications14.919https://www.nature.com/articles/s41467-022-28920-6
    ZQ0446HUVECsDurable endothelium-mimicking coating for surface bioengineering cardiovascular stents10.1016/j.bioactmat.2021.05.0092021-05-24Bioactive Materials14.593https://www.sciencedirect.com/science/article/pii/S2452199X21002292
     HUASMCsDurable endothelium-mimicking coating for surface bioengineering cardiovascular stents10.1016/j.bioactmat.2021.05.0092021-05-24Bioactive Materials14.593https://www.sciencedirect.com/science/article/pii/S2452199X21002292
    ZQ0098RAW 264.7 cellsDurable endothelium-mimicking coating for surface bioengineering cardiovascular stents10.1016/j.bioactmat.2021.05.0092021-05-24Bioactive Materials14.593https://www.sciencedirect.com/science/article/pii/S2452199X21002292
     Human gingival fibroblasts (HGFs)Photocrosslinkable Col/PCL/Mg composite membrane providing spatiotemporal maintenance and positive osteogenetic effects during guided bone regeneration10.1016/j.bioactmat.2021.10.0192021-11-03Bioactive Materials14.593https://www.sciencedirect.com/science/article/pii/S2452199X21004837
    ZQ0446Primary ECsPhosphorylation inhibition of protein-tyrosine phosphatase 1B tyrosine-152 induces bone regeneration coupled with angiogenesis for bone tissue engineering10.1016/j.bioactmat.2020.12.0252021-01-07Bioactive Materials14.593https://www.sciencedirect.com/science/article/pii/S2452199X20303583
    ZQ0452Murine C3H10T1/2 cellsEnhanced osteogenesis of titanium with nano-Mg(OH)2 film and a mechanism study via whole genome expression analysis10.1016/j.bioactmat.2021.02.0032021-02-13Bioactive Materials14.593https://www.sciencedirect.com/science/article/pii/S2452199X21000542
    ZQ-300MEMEnhanced osteogenesis of titanium with nano-Mg(OH)2 film and a mechanism study via whole genome expression analysis10.1016/j.bioactmat.2021.02.0032021-02-13Bioactive Materials14.593https://www.sciencedirect.com/science/article/pii/S2452199X21000542
    ZQ0089/ZQ0177/ZQ0181/ZQ0726Mouse 3T3 fibroblast cellsA nanoconcrete welding strategy for constructing high-performance wound dressing10.1016/j.bioactmat.2021.12.0142021-12-18Bioactive Materials14.593https://www.sciencedirect.com/science/article/pii/S2452199X21005867
    ZQ0446HUVECsModulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing10.1016/j.bioactmat.2021.03.0382021-04-06Bioactive Materials14.593https://www.sciencedirect.com/science/article/pii/S2452199X21001493
    ZQ0450HDFsModulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing10.1016/j.bioactmat.2021.03.0382021-04-06Bioactive Materials14.593https://www.sciencedirect.com/science/article/pii/S2452199X21001493
    ZQ0003A549 cellsBioaccumulation of differently-sized polystyrene nanoplastics by human lung and intestine cells10.1016/j.jhazmat.2022.1295852022-07-12JOURNAL OF HAZARDOUS MATERIALS14.224https://www.sciencedirect.com/science/article/pii/S0304389422013784
    ZQ0056Caco-2 cellsBioaccumulation of differently-sized polystyrene nanoplastics by human lung and intestine cells10.1016/j.jhazmat.2022.1295852022-07-12JOURNAL OF HAZARDOUS MATERIALS14.224https://www.sciencedirect.com/science/article/pii/S0304389422013784
     RPMI-1640 mediumBioaccumulation of differently-sized polystyrene nanoplastics by human lung and intestine cells10.1016/j.jhazmat.2022.1295852022-07-12JOURNAL OF HAZARDOUS MATERIALS14.224https://www.sciencedirect.com/science/article/pii/S0304389422013784
    ZQ0020MHCC97H cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0019MHCC97L cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0024Hep3B cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0023HCCLM3 cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
     SGC-996 cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0251GBC-SD cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
     NOZ cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0072MBA-MB-453 cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0373MBA-MB-468 cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0080SKBR-3 cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0007NCI-H1299 cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0111NCI-H460 cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0338786-O cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0340ACHN cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0336OSRC-2 cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0031LO2  cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0466BJ cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0313HK-2 cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0905GES-1 cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0034HEK293 cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
    ZQ0186B16 cellsTriple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors10.1136/jitc-2022-0046912022-05-01Journal for ImmunoTherapy of Cancer13.751https://jitc.bmj.com/content/10/5/e004691.abstract
     leukemia cellsLiving Nanospear for Near-Field Optical Probing10.1021/acsnano.8b052352018-09-28ACS Nano13.709https://pubs.acs.org/doi/abs/10.1021/acsnano.8b05235
     lentiviral vectorsLiving Nanospear for Near-Field Optical Probing10.1021/acsnano.8b052352018-09-28ACS Nano13.709https://pubs.acs.org/doi/abs/10.1021/acsnano.8b05235
    ZQ0095MC3T3-E1 cellsSelf-Organized Spatiotemporal Mineralization of Hydrogel: A Simulant of Osteon10.1002/smll.2021066492021-12-18Small13.281https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202106649
    ZQ0446HUVECsAn effective strategy for preparing macroporous and self-healing bioactive hydrogels for cell delivery and wound healing10.1016/j.cej.2021.1306772021-06-06CHEMICAL ENGINEERING JOURNAL13.273https://www.sciencedirect.com/science/article/pii/S1385894721022634
     MAECsAn effective strategy for preparing macroporous and self-healing bioactive hydrogels for cell delivery and wound healing10.1016/j.cej.2021.1306772021-06-06CHEMICAL ENGINEERING JOURNAL13.273https://www.sciencedirect.com/science/article/pii/S1385894721022634
    ZQ0068HeLa cellsPhotococatalytic anticancer performance of naked Ag/AgCl nanoparticles10.1016/j.cej.2021.1312652021-07-10CHEMICAL ENGINEERING JOURNAL13.273https://www.sciencedirect.com/science/article/pii/S1385894721028461
    ZQ0090bEnd.3 cellsInflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy10.1016/j.biomaterials.2021.1207842021-03-31BIOMATERIALS12.479https://www.sciencedirect.com/science/article/pii/S014296122100140X
    ZQ0148rat glioblastomas (C6) cellsInflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy10.1016/j.biomaterials.2021.1207842021-03-31BIOMATERIALS12.479https://www.sciencedirect.com/science/article/pii/S014296122100140X
    ZQ0277rat bone marrow-derived MSCsHighly effective rheumatoid arthritis therapy by peptide-promoted nanomodification of mesenchymal stem cells10.1016/j.biomaterials.2022.1214742022-03-18BIOMATERIALS12.479https://www.sciencedirect.com/science/article/pii/S0142961222001132
    ZQ-1327MSCs MediumHighly effective rheumatoid arthritis therapy by peptide-promoted nanomodification of mesenchymal stem cells10.1016/j.biomaterials.2022.1214742022-03-18BIOMATERIALS12.479https://www.sciencedirect.com/science/article/pii/S0142961222001132
    ZQ0336/ZQ0467/ZQ0481Human renal carcinoma cell line RCC cellsChiral NIR-II fluorescent Ag2S quantum dots with stereospecific biological interactions and tumor accumulation behaviors10.1016/j.scib.2022.05.0012022-05-04Science Bulletin11.78https://www.sciencedirect.com/science/article/pii/S2095927322001955
    ZQ02014T1 cellsA metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy10.1016/j.scib.2021.11.0032021-11-03Science Bulletin11.78https://www.sciencedirect.com/science/article/pii/S2095927321006952
    ZQ0071MCF-7 cellsA metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy10.1016/j.scib.2021.11.0032021-11-03Science Bulletin11.78https://www.sciencedirect.com/science/article/pii/S2095927321006952
    ZQ0003A549 cellsA metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy10.1016/j.scib.2021.11.0032021-11-03Science Bulletin11.78https://www.sciencedirect.com/science/article/pii/S2095927321006952
    ZQ0054U87 MG cellsA metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy10.1016/j.scib.2021.11.0032021-11-03Science Bulletin11.78https://www.sciencedirect.com/science/article/pii/S2095927321006952
    ZQ0062SGC-7901 cellsA metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy10.1016/j.scib.2021.11.0032021-11-03Science Bulletin11.78https://www.sciencedirect.com/science/article/pii/S2095927321006952
    ZQ0040PC-3 cellsA metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy10.1016/j.scib.2021.11.0032021-11-03Science Bulletin11.78https://www.sciencedirect.com/science/article/pii/S2095927321006952
    ZQ0086THP-1 cellsExosomal ncRNAs profiling of mycobacterial infection identified miRNA-185-5p as a novel biomarker for tuberculosis10.1093/bib/bbab2102021-11-05BRIEFINGS IN BIOINFORMATICS11.622https://academic.oup.com/bib/article-abstract/22/6/bbab210/6309357
    ZQ-599F12K mediaDiscovery of small molecule Gαq/11 protein inhibitors against uveal melanoma10.1016/j.apsb.2022.04.0162022-05-04Acta Pharmaceutica Sinica B11.614https://www.sciencedirect.com/science/article/pii/S2211383522002040
    ZQ0022HepG2 cellsAnthelmintics nitazoxanide protects against experimental hyperlipidemia and hepatic steatosis in hamsters and mice10.1016/j.apsb.2021.09.0092021-09-17Acta Pharmaceutica Sinica B11.614https://www.sciencedirect.com/science/article/pii/S2211383521003518
    ZQ0031LO2 cellsAnthelmintics nitazoxanide protects against experimental hyperlipidemia and hepatic steatosis in hamsters and mice10.1016/j.apsb.2021.09.0092021-09-17Acta Pharmaceutica Sinica B11.614https://www.sciencedirect.com/science/article/pii/S2211383521003518
     genomic short tandem repeat (STR) profileMitochondrial cytochrome P450 (CYP) 1B1 is responsible for melatonin‐induced apoptosis in neural cancer cells10.1111/jpi.124782018-03-25JOURNAL OF PINEAL RESEARCH11.613https://onlinelibrary.wiley.com/doi/abs/10.1111/jpi.12478
    ZQ0921MH-S cellsPhosphorus dendron nanomicelles as a platform for combination anti-inflammatory and antioxidative therapy of acute lung injury10.7150/thno.707012022-04-11Theranostics11.6https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065184/
     RPMI 1640 mediumPhosphorus dendron nanomicelles as a platform for combination anti-inflammatory and antioxidative therapy of acute lung injury10.7150/thno.707012022-04-11Theranostics11.6https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065184/
    ZQ100/ZQ500fetal bovine serum (FBS)Phosphorus dendron nanomicelles as a platform for combination anti-inflammatory and antioxidative therapy of acute lung injury10.7150/thno.707012022-04-11Theranostics11.6https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065184/
    CSP005β-mercaptoethanolPhosphorus dendron nanomicelles as a platform for combination anti-inflammatory and antioxidative therapy of acute lung injury10.7150/thno.707012022-04-11Theranostics11.6https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9065184/
    ZQ0050SH-SY5Y cellsInhibition of miR-331-3p and miR-9-5p ameliorates Alzheimer's disease by enhancing autophagy10.7150/thno.474082021-01-01Theranostics11.556https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797673/
    ZQ0207Neuro-2a (N2a) cellsActivating AhR alleviates cognitive deficits of Alzheimer's disease model mice by upregulating endogenous Aβ catabolic enzyme Neprilysin10.7150/thno.616012021-08-11Theranostics11.556https://www.ncbi.nlm.nih.gov/pmc/articles/pmc8419060/
    ZQ0033HEK293T cellsActivating AhR alleviates cognitive deficits of Alzheimer's disease model mice by upregulating endogenous Aβ catabolic enzyme Neprilysin10.7150/thno.616012021-08-11Theranostics11.556https://www.ncbi.nlm.nih.gov/pmc/articles/pmc8419060/
    ZQ02014T1 cellsEstimating dynamic vascular perfusion based on Er-based lanthanide nanoprobes with enhanced down-conversion emission beyond 1500 nm10.7150/thno.657712021-10-11Theranostics11.556https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581431/
    ZQ0079EA.hy926 cellsThe subcellular redistribution of NLRC5 promotes angiogenesis via interacting with STAT3 in endothelial cells10.7150/thno.544732021-03-04Theranostics11.556https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7977449/
    ZQ0887HMC3 cellsMicroRNA-146a switches microglial phenotypes to resist the pathological processes and cognitive degradation of Alzheimer's disease10.7150/thno.534182021-02-19Theranostics11.556https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7977456/
    ZQ0558SUDHL-6 cellsSingle-cell profiling-guided combination therapy of c-Fos and histone deacetylase inhibitors in diffuse large B-cell lymphoma10.1002/ctm2.7982022-05-06Clinical and Translational Medicine11.492https://onlinelibrary.wiley.com/doi/abs/10.1002/ctm2.798


     

    图标技术资料

    暂无技术资料 索取技术资料

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥150
    上海冠导生物工程有限公司
    2025年12月25日询价
    询价
    上海晅科生物科技有限公司
    2025年07月11日询价
    ¥3000
    上海博尔森生物科技有限公司
    2025年11月24日询价
    ¥1150
    上海富雨生物科技有限公司
    2025年09月30日询价
    ¥990
    武汉华尔纳生物科技有限公司
    2025年07月13日询价
    文献支持
    细胞系(株)免费含str鉴定
    询价