产品封面图

Cough-M动物咳嗽检测系统呼吸指标测量penh

收藏
  • 询价
  • 塔望科技
  • Cough-M
  • 上海
  • 2026年01月19日
    avatar
  • 企业认证

    • 详细信息
    • 询价记录
    • 技术资料
    • 库存

      1

    • 国食药监械注册号

      /

    • 保修期

      1年

    • 现货状态

    • 供应商

      塔望科技

    • 规格

      咨询电话:021-51537683/15221725700

    WBP全身体积描记系统

    产品细节图片1
          无约束全身体积描记法(whole-body plethysmograph ,WBP)可以对清醒自由活动的小动物进行肺功能及气道反应相关的测试,避免了创伤性气管切开术及麻醉的影响,使实验过程简便快捷,并适合长期跟踪研究。
          塔望科技研发的动物咳嗽检测系统用于对实验动物进行诱咳,然后今后咳嗽检测的设备。系统提供液体气溶胶雾化功能,将液体药物雾化为可吸入的气溶胶,通过动物呼吸进入动物体内,诱发动物咳嗽。具有呼吸检测功能,监测实验过程中咳嗽发生的潜伏期及次数。动物咳嗽检测系统目前有针对小鼠、大鼠、豚鼠、兔子、犬等动物的型号。可根据用户的需求量身定做。
          实验时,将动物置于密闭体描箱内,体描箱与通向体描箱外的感应器连接。动物呼吸时,其胸廓的起伏使体描箱内容积发生改变,此容积变化通过压力换能器和放大器转换为电信号,经计算机处理后,其呼吸曲线显示于 电脑屏幕上,图形经软件处理, 可计算出潮气量(TV)、呼气峰流速(PEF)、呼吸频率等呼吸参数。
          系统可扩展连接雾化给药器 ,对体描箱内动物进行雾化给药, 过程中呼吸常规指标和气道高反应的变化,用以评价,支气管收缩等。


    产品特点
    产品细节图片2

    • 不需要做手术, 操作简单
    • 操作简单 ,可在动物在最自然状态下呼吸的研究以及长期 跟踪实验 ,适合进行药物初筛
    • 具有气溶胶雾化模块
    • 最多同时监测64只动物
    •  具有自动标定功能
    • 具有饮水瓶和食物口, 可进行长期连续监测
    • 适用于小 鼠、大 鼠或其它动物
    • 具有多种功能升级选项 ,适用不同研究, 如低氧干预、脑 电监测、呼吸代谢监控等


    检测参数
     
     产品细节图片3







    呼吸频率             吸气时间        松弛时间        潮气量          呼吸流量          累积体积
    吸气流量峰值      吸气末暂停     Penh             每分通气量    呼气时间
    呼气流量峰值      呼气末暂停     每分通气量    其它参数



    雾化给药:精确 、定量

    产品细节图片4


     





     
     

    相关扩展应用
    1、吸入式毒理
    产品细节图片5


    将染毒物质 引入动物体积描记器,用于毒理研究                                                     

    2、低氧研究  
     
    产品细节图片6









    可用于低氧或高氧实验



    3、呼吸代谢监控 、嗅觉行为学                                               

    产品细节图片7
    监测吸氧浓度、 CO2浓度、呼吸代谢率,以用于嗅觉刺激相关 的行为学实验
     
    4、光遗传/EEG/电生理集成

    产品细节图片8






    可以和光遗传技术 、EEG、EMG、电生理等技术联用

    5、活动跑轮监测联用                                                                       
    产品细节图片9
    同步监测动物活动量,可增加呼吸代谢监控功能

    6、持续注射给药微透析联用
    产品细节图片10









    可实现清醒状态下连续给药、采血、 微透析实验

    7、
    同步视频监测
    产品细节图片11
    同步的视频录像文件

    8、咳嗽检测
    产品细节图片12






    通过软件自动监测咳嗽事件

    9、
    各种动物呼吸检测                                                            
    产品细节图片13 
    可定制各种大动物体积描记器, 如兔、 犬、 猴等

    10、其它生理指标测量
    可在麻醉或清醒状态下测量心电、血压、体温、心率等指标 ,可与植入式遥测设备联合使用;
    如果您有特殊的实验需求 ,请联系我们具体商谈。

     

    WBP与脑电肌电监测联用
    同步监测EEG和EMG波形图、 呼吸信号等,可用于监测动物睡眠状态

    产品细节图片14
    参考文献
    [1]Sun Lingna,Fan Mingrui,Huang Dong,Li Bingqin,Xu Ruoting,Gao Feng,Chen Yanzuo. Clodronate-loaded liposomal and fibroblast-derived exosomal hybrid system for enhanced drug delivery to pulmonary fibrosis[J]. Biomaterials,2021(prepublish):

    [2]李宁,李红鹏,张本炎,张柳,沈继敏,李庆云.高脂膳食对小鼠呼吸功能和膈肌纤维的影响及其线粒体机制[J].中华医学杂志,2021,101(36):2893-2899.
    [3]Xiong Jiaying,Zhuang Tao,Ma Yurong,Xu Junyi,Ye Jiaqi,Ma Ru,Zhang Shuang,Liu Xin,Liu Bi-Feng,Hao Chao,Zhang Guisen,Chen Yin. Optimization of bifunctional piperidinamide derivatives as σ1R Antagonists/MOR agonists for treating neuropathic pain[J]. European Journal of Medicinal Chemistry,2021,226:

    型号选择

           名称      型号     说明    单位
    全身体积描记系统  WBP-4M 四通道,小 鼠    套
    全身体积描记系统   WBP-4R 四通道,大 鼠   套
    全身体积描记系统   WBP-4MR 四通道,小鼠+大鼠   套
    全身体积描记系统   WBP-8M  八通道,小鼠    套
    全身体积描记系统    WBP-8R 八通道,大鼠   套
    全身体积描记系统   WBP-8MR 八通道,小鼠+大鼠  套

    相关文献

    [1] Zhou J W, Bai Y, Guo J Q, et al. Peroxiredoxin 4 as a switch regulating PTEN/AKT axis in alveolar macrophages activation[J]. Signal Transduction and Targeted Therapy (IF 52.7), 2025, 10(1): 352.
    [2] Jiang C, Huang H, Yang X, et al. Targeting mitochondrial dynamics of morphin-responsive dopaminergic neurons ameliorates opiate withdrawal[J]. The Journal of Clinical Investigation (IF 19.5), 2024.
    [3] Wang Z, Miao Z, Cao Z, et al. Mild Hyperthermia‐Assisted Coaxial Electrospun Nanofiber Patches for Epicutaneous Allergen‐Specific Immunotherapy[J]. Advanced Functional Materials (IF 19.0), 2025: e09955.
    [4] Dong S, Fang H, Zhu J, et al. Inhalable siRNA Targeting IL-11 Nanoparticles Significantly Inhibit Bleomycin-Induced Pulmonary Fibrosis[J]. ACS nano (IF 15.8), 2025.
    [5] Chen J, Wang J, Zheng W, et al. Brain–cervical lymph node crosstalk contributes to brain injury induced by subarachnoid hemorrhage in mice[J]. Nature Communications (IF 15.7), 2025, 16(1): 8551.
    [6] Wang Y, Zhao Q, Zhang Q, et al. Targeted Delivery of CNS‐Specific Hesperidin as a Leptin Sensitizer for Treating Obesity‐Associated Sleep‐Disordered Breathing[J]. Advanced Science (14.1), 2025, 12(45): e06182.
    [7] Wang Z, Lu X, Wu L, et al. Co-delivery of targeted hypoallergens and resiquimod powders using silk fibroin microneedles for effective allergen-specific immunotherapy[J]. Theranostics (IF 13.3), 2025, 15(16): 8096.
    [8] Liu Y, Li G, Xiong A, et al. Fine particulate matter exacerbates asthma by activating STC2-mediated mitophagy through METTL3/YTHDF2-dependent m6A methylation[J]. Journal of Hazardous Materials (IF12.2), 2025: 138854.
    [9] Li H, Liu S, Dai W, et al. Pressure-sensitive multivesicular liposomes as a smart drug-delivery system for high-altitude pulmonary edema[J]. Journal of Controlled Release (IF 11.5), 2024, 365: 301-316.
    [10] Hou T, Zhu L, Zhang Y, et al. Lipid peroxidation triggered by the degradation of xCT contributes to gasdermin D-mediated pyroptosis in COPD[J]. Redox Biology (IF 10.1), 2024, 77: 103388.
    [11] Luo L, Qin Z, Chen M, et al. γ-Aminobutyric acid–mediated parafacial zone: Integrating consciousness and respiratory control in sevoflurane anesthesia[J]. Anesthesiology (IF 9.1), 2025, 144(1): 116.
    [12] Duan L L, Cai P, Li Z S, et al. Role of the supramammillary nucleus–medial septum glutamatergic pathway in mediating the effects of isoflurane anesthesia[J]. Anesthesiology (IF 9.1), 2025, 143(4): 944.
    [13] Wei X, Cao X, Xu C, et al. Revolutionizing antibiotic therapy: polymyxin B and Fe2+-enriched liposomal carrier harness novel bacterial ferroptosis mechanism to combat resistant infections[J]. Journal of Pharmaceutical Analysis, 2025: 101293.
    [14] Zhou W, Zhou Y, Zhang S, et al. Gut microbiota’s role in high-altitude cognitive impairment: The therapeutic potential of Clostridium sp. supplementation[J]. Science China Life Sciences, 2025, 68(4): 1132-1148.
    [15] Liu J, Gao J, Xiong A, et al. Exploring Cistanche's therapeutic potential and molecular mechanisms in asthma treatment[J]. Phytomedicine, 2025, 136: 156265.
    [16] Wang X, Zhao H, Lin W, et al. Panax notoginseng saponins ameliorate LPS-induced acute lung injury by promoting STAT6-mediated M2-like macrophage polarization[J]. Phytomedicine, 2025, 139: 156513.
    [17] Jiang J, Ai S, Yuan C, et al. Dysfunction of cholinergic neuron in nucleus ambiguous aggravates sepsis-induced lung injury via a GluA1-dependment mechanism[J]. Brain, Behavior, and Immunity, 2025.
    [18] Xu Z, Wu Y, Zhao X, et al. Integrating nontargeted metabolomics and RNA sequencing of dexamethasone-treated and untreated asthmatic mice reveals changes of amino acids and aminoacyl-tRNA in group 2 innate lymphoid cells[J]. International Journal of Biological Macromolecules, 2024, 283: 137630.
    [19] Su J, Tu Y, Hu X, et al. Ambient PM2. 5 orchestrates M1 polarization of alveolar macrophages via activating glutaminase 1-mediated glutaminolysis in acute lung injury[J]. Environmental Pollution, 2025, 366: 125467.
    [20] Shan C, Li W, Sun Y, et al. Benzo (a) pyrene exposure aggravates airway remodeling in asthma by activating AhR-GDF15 pathway in epithelial cells[J]. Environmental Pollution, 2025: 127557.
    [21] Zhang M, Xu B, Li N, et al. All-Hydrocarbon Stapled Peptide Multifunctional Agonists at Opioid and Neuropeptide FF Receptors: Highly Potent, Long-Lasting Brain Permeant Analgesics with Diminished Side Effects[J]. Journal of Medicinal Chemistry, 2023.
    [22] Long Y, Ang Y, Chen W, et al. Hydrogen alleviates impaired lung epithelial barrier in acute respiratory distress syndrome via inhibiting Drp1-mediated mitochondrial fission through the Trx1 pathway[J]. Free Radical Biology and Medicine, 2024, 218: 132-148.
    [23] Wang Y, Liu X, Zhang Q, et al. Bioluminescence-optogenetics-mediated gene therapy in a sleep-disordered breathing mouse model[J]. Biomedicine & Pharmacotherapy, 2024, 178: 117159.
    [24] Tabynov K, Tailakova E, Rakhmatullayeva G, et al. Comparison of rArt v 1-based sublingual and subcutaneous immunotherapy in a murine model of asthma[J]. npj Vaccines, 2025, 10(1): 66.
    [25] Jiang Y, Zhang Y, Wang X, et al. Phosphatase PHLPP1 is an alveolar-macrophage-intrinsic transcriptional checkpoint controlling pulmonary fibrosis[J]. Cell Reports, 2025, 44(3).
    [26] Liu S, Chu J, Yin X, et al. The adeno associated viral vectored Dp12S vaccine effective alleviation of asthma symptoms in mice[J]. npj Vaccines, 2025.
    [27] Jin M, Liu J, Shao M, et al. Chitosan Nanoparticles for Pulmonary Delivery of Curcumin/Nintedanib to Treat Pulmonary Fibrosis[J]. International Journal of Nanomedicine, 2025: 12959-12973.
    [28] Xiong A, He X, Liu S, et al. Oxidative stress-mediated activation of FTO exacerbates impairment of the epithelial barrier by up-regulating IKBKB via N6-methyladenosine-dependent mRNA stability in asthmatic mice exposed to PM2. 5[J]. Ecotoxicology and Environmental Safety, 2024, 272: 116067.
    [29] Jia X, Liu S, Sun C, et al. METTL16 controls airway inflammations in smoking-induced COPD via regulating glutamine metabolism[J]. Ecotoxicology and Environmental Safety, 2025, 289: 117518.
    [30] Lu X, Tan Z X, Yao Y X, et al. Inhaling arsenic aggravates airway hyperreactivity by upregulating PNEC-sourced 5-HT in OVA-induced allergic asthma[J]. Ecotoxicology and Environmental Safety, 2025, 290: 117764.
    [31] Li Q, Ang Y, Zhou Q, et al. Coral calcium hydride promotes peripheral mitochondrial division and reduces AT-II cells damage in ARDS via activation of the Trx2/Myo19/Drp1 pathway[J]. Journal of Pharmaceutical Analysis, 2024: 101039.
    [32] Zhang X, Hu T, Yu X, et al. Human umbilical cord mesenchymal stem cells improve lung function in chronic obstructive pulmonary disease rat model through regulating lung microbiota[J]. Stem Cells, 2024: sxae007.
    [33] Akhtemova N, Sergazina A, Bolatbekov T, et al. The role of major allergens Art v 1 and Art v 3 in Artemisia pollen-induced asthma: a mouse model study[J]. Frontiers in Immunology, 2025, 16: 1590791.
    [34] Tabynov K, Nedushenko I, Tailakova E, et al. Intranasal monoclonal antibodies to mugwort pollen reduce allergic inflammation in a mouse model of allergic rhinitis and asthma[J]. Frontiers in Immunology, 2025, 16: 1595659.
    [35] Zhang Y, Jiang M, Xiong Y, et al. Integrated analysis of ATAC-seq and RNA-seq unveils the role of ferroptosis in PM2. 5-induced asthma exacerbation[J]. International Immunopharmacology, 2023, 125: 111209.
    [36] Yao W, Huang S X, Zhang L, et al. Central amygdala somatostatin neurons modulate stress-induced sleep-onset insomnia[J]. Communications Biology, 2025, 8(1): 381.
    [37] Lin Y, Wu Y, Ma F, et al. Exploration of the mechanism of Qi-Xian decoction in asthmatic mice using metabolomics combined with network pharmacology[J]. Frontiers in Molecular Biosciences, 2023, 10.
    [38] Yang D, Li Y, Liu T, et al. IL‐1β promotes IL‐17A production of ILC3s to aggravate neutrophilic airway inflammation in mice[J]. Immunology, 2025, 176(1): 16-32.
    [39] Zhang Y, Yang Y, Liang H, et al. Nobiletin, as a Novel PDE4B Inhibitor, Alleviates Asthma Symptoms by Activating the cAMP-PKA-CREB Signaling Pathway[J]. International Journal of Molecular Sciences, 2024, 25(19): 10406.
    [40] Tsentsevitsky A N, Sibgatullina G V, Odoshivkina Y G, et al. Functional and Structural Changes in Diaphragm Neuromuscular Junctions in Early Aging[J]. International Journal of Molecular Sciences, 2024, 25(16): 8959.
    [41] Ma J, Ni Z, Chen Q, et al. Exploring the kidney-tonifying effect of Qi-Xian decoction for asthma treatment by modulating the proliferation and migration of endogenous BMSCs[J]. Chinese Journal of Natural Medicines, 2025, 23(12): 100009.
    [42] Liu K, Gu Y, Gu S, et al. Trim27 aggravates airway inflammation and oxidative stress in asthmatic mice via potentiating the NLRP3 inflammasome[J]. International Immunopharmacology, 2024, 134: 112199.
    [43] Yuan Z, Wang Q, Tan Y, et al. Methylprednisolone alleviates lung injury in sepsis by regulating miR-151-5p/USP38 pathway[J]. International Immunopharmacology, 2024, 138: 112548.
    [44] Wang Y, Peng M, Yang X, et al. Total alkaloids in Fritillaria cirrhosa D. Don alleviate OVA-induced allergic asthma by inhibiting M2 macrophage polarization[J]. Journal of Ethnopharmacology, 2025, 337: 118935.
    [45] He J, Li J, Lin Q, et al. Anti-CD20 treatment attenuates Th2 cell responses: implications for the role of lung follicular mature B cells in the asthmatic mice[J]. Inflammation Research, 2024, 73(3): 433-446
    [46] Liu Y, Tang A, Liu M, et al. Tuberostemonine may enhance the function of the SLC7A11/glutamate antiporter to restrain the ferroptosis to alleviate pulmonary fibrosis[J]. Journal of Ethnopharmacology, 2024, 318: 116983.
    [47] Chen N, Xie Q M, Song S M, et al. Dexamethasone protects against asthma via regulating Hif-1α-glycolysis-lactate axis and protein lactylation[J]. International Immunopharmacology, 2024, 131: 111791.
    [48] Li R, Zhang W, Huang B, et al. Dayuan Yin alleviates symptoms of HCoV-229E-induced pneumonia and modulates the Ras/Raf1/MEK/ERK pathway[J]. Natural Products and Bioprospecting, 2024, 14(1): 58.
    [49] Wei M, Song M, Lin L, et al. Mechanism of Keke tablets in treating post-infectious cough following influenza A virus infection based on network pharmacology, molecular docking, molecular dynamics and in vivo experiments[J]. International Immunopharmacology, 2025, 162: 115123.
    [50] Gong X T, Li Z S, Chen Z L, et al. Basal forebrain-ventral tegmental area glutamatergic pathway promotes emergence from isoflurane anesthesia in mice[J]. Journal of Neuroscience, 2025.
    [51] Cheng S, Huang H, Zhang Z, et al. Pulmonary delivery of excipient-free tobramycin DPIs for the treatment of Pseudomonas aeruginosa lung infection with CF[J]. Frontiers in Pharmacology, 2025, 16: 1528905.
    [52] Yan C X, Sun K, Zhu X, et al. Oligomeric proanthocyanidins mitigate acute lung injury by inhibiting NETs and inflammation via the gut-lung axis[J]. Journal of Functional Foods, 2024, 118: 106272.
    [53] Liu Y, Wang X, Wei J, et al. Comprehensive profiling of amino acids and derivatives in biological samples: A robust UHPLC-MS/MS method for investigating acute lung injury[J]. Journal of Chromatography A, 2024, 1721: 464816.
    [54] Zakyrjanova G F, Tsentsevitsky A N, Matigorova V A, et al. Cholesterol-lowering treatment suppresses neuromuscular transmission via presynaptic mechanism at the mouse diaphragm muscle[J]. Neurochemical Research, 2025, 50(5): 1-23.
    [55] Zhang J, Huang M, Zhou J, et al. Bmi-1 overexpression mitigates vitamin D deficiency-induced pulmonary fibrosis via TIME pathway[J]. Cellular Signalling, 2025: 112180.
    [56] Sun G, Hao W, Li Q, et al. Therapeutic and prophylactic effects of Qipian on COPD in mice: the role of lung and gut microbiota[J]. Microbiology Spectrum, 2025: e01969-24.
    [57] Khaziev A N, Tsentsevitsky A N, Fedorov N S, et al. Exogenous nanomolar zinc ion (Zn2+) as a negative modulator of neuromuscular transmission via presynaptic mechanism in mouse diaphragm[J]. BioMetals, 2025: 1-24.
    [58] Fu X, Wang L T, Xu Q, et al. Necroptosis Inhibition Preserves Diaphragm Function in Experimental Sepsis[J]. The American Journal of Pathology, 2025, 195(12): 2373-2386.
    [59] Zheng R, Yang W, Yan J, et al. DNAH10 mutation cause primary ciliary dyskinesia with defects of IDAf complex assembly and lung fibrosis manifestation[J]. Orphanet Journal of Rare Diseases, 2025, 20(1): 469.
    [60] Chen X Y, Wang L, Ma X, et al. Development of fentany-specific monoclonal antibody (mAb) to antagonize the pharmacological effects of fentany[J]. Toxicology and Applied Pharmacology, 2024, 486: 116918.
    [61] Han C H, Zhang P X, Liu Y, et al. Inhibition of renin-angiotensin system attenuates type I alveolar epithelial cell necroptosis in rats after hyperbaric hyperoxic exposure[J]. Frontiers in Medicine, 2025, 12: 1521729.
    [62] Yin, Lijun; Guan, Zhenbiao; Xu, Jiajun; Yu, Xuhua; Wen, Yukun; Wang, Shifeng; Liu, Wenwu. Assessment of hyperbaric hyperoxic lung injury in rats. Medical Gas Research 15(1):p 129-131, March 2025. | DOI: 10.4103/mgr.MEDGASRES-D-24-00030 
    [63] Yin L, Wen Y, Liang Z, et al. Lung function and blood gas of rats after different protocols of hypobaric exposure[J]. Medical Gas Research, 2025, 15(1): 180-187.
    [64] Aisanjiang M, Dai W, Wu L, et al. Ameliorating lung fibrosis and pulmonary function in diabetic mice: Therapeutic potential of mesenchymal stem cell[J]. Biochemical and Biophysical Research Communications, 2024, 737: 150495.
    [65] Jia X, Sun J, Zhuo Q, et al. Effect of the NLRP3 inflammasome on increased hypoxic ventilation response after CIH exposure in mice[J]. Respiratory Physiology & Neurobiology, 2024, 321: 104204.
    [66] Kuznetsova E A, Fedorov N S, Zakyrjanova G F, et al. 25-Hydroxycholesterol as a negative regulator of diaphragm muscle contractions via estrogen receptor and Ca2+-dependent pathway[J]. Histochemistry and Cell Biology, 2025, 163(1): 1-15.
    [67] Wu Y, Dai T, Qin J, et al. Regulation of Dendritic Cell Function by RFX5 through Interaction with HDAC2 and Its Mechanism in Pediatric Asthma[J]. Biocell, 2025, 49(4).
    [68] Xu X, Nie X, Zhang W, et al. A brainstem circuit controls cough-like airway defensive behaviors in mice[J]. bioRxiv, 2024: 2024.09. 08.611924.
    [69] Li W, Wu L, Lu X, et al. Prenatal Benzo [A] Pyrene Exposure Exacerbates Ova-Induced Asthma in Offspring Mice[J]. Available at SSRN 5265037.

    *我公司可以根据客户的特殊应用、特殊需求提供功能定制服务,也可以提供相关的实验服务,详情请来电咨询。

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    • 作者
    • 内容
    • 询问日期

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    询价
    上海塔望智能科技有限公司
    2026年01月24日询价
    ¥50000
    上海玉研科学仪器有限公司
    2026年01月24日询价
    ¥500000
    北京科月华诚科技有限公司
    2026年01月21日询价
    ¥35000
    南京卡尔文生物科技有限公司
    2026年01月23日询价
    询价
    北京吉安得尔科技有限公司
    2026年01月24日询价
    Cough-M动物咳嗽检测系统呼吸指标测量penh
    询价