产品封面图
文献支持

PennCentury 喷雾器,肺部给药器,气管雾化给药,多

篇高分文献支持
收藏
  • ¥6000 - 16000
  • 玉研仪器已认证
  • PennCentury 喷雾器,肺部给药器,气管雾化给药
  • CHINA
  • 2026年01月04日
    avatar
    品牌商
    14钻石会员
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 询价记录
    • 文献和实验
    • 技术资料
    • 库存

      100

    • 国食药监械注册号

    • 保修期

      12个月

    • 现货状态

      PennCentury 喷雾器,肺部给药器,气管雾化给药

    • 供应商

      玉研仪器公司

    小动物肺部液体雾化给药器 YAN-30012型

    玉研仪器公司专业研制十三年,权威报告实现精细化粒径范围,定量有效到达肺部提高药量精性,减少药物浪费。支持气溶胶或干粉药物,高分文献数量多。

    产品细节图片1
    主要优点
    · 定量 QUANTIFIABLE:将定量的气溶胶给到动物肺部
    · 定时 TIMED:可以在一个或多个时间点进行给药
    · 有效 EFFECTIVE:气溶胶的吸收效果好,给药快速,效率高,操作方便
    · 方便 CONVENIENCE:维护简单,操作方便

    详细介绍

    专业研制十三年,权威报告实现精细化粒径范围,定量有效到达肺部提高药量精性,减少药物浪费。支持气溶胶或干粉药物,高分文献量多。肺部液体雾化给药器是上海玉研仪器专门为小鼠、大鼠、豚鼠等小动物研发设计,可精确进行气管内雾化给药的装置。可将定量液体通过集成在不锈钢毛细插管中的气溶胶雾化微喷头雾化,毛细插管可深入动物至支气管分叉处,实现气管内定量雾化成气溶胶给药。相较于传统口服或注射给药,药物可直接作用于肺部,适用于肺部生理、病理、药理学研究。

     

    产品细节图片2

     

    优势特点

    1、适用于小鼠、大鼠、豚鼠、兔子等小动物,也可定制大动物专用款
    2、气管内直接给药,无首关消除,药物全身效应小
    3、微量精确给药,最小药物用量25μL(液体)
    4、可用于溶液、小细胞悬浮液、均质悬浊液、粘度较低的乳浊液、干粉等给药
    5、90%药物雾化直径≤30μm(液体),可达终末细支气管甚至呼吸性细支气管,可均匀分布于大小鼠肺部组织中
    6、使用方便,安全稳定,采用不锈钢材质,坚固稳定耐腐蚀
    7、具有至少30篇高影响因子SCI文献发表,可提供至少1篇IF大于35分的SCI文献
    8、设备具有CE认证证书或EC符合性证书
    9、可用于吸入毒理学、空气生物学、生物危害测试、吸入免疫、吸入治疗、药物研究、环境评价、危害评估和医学防护等多领域

    应用领域

    1、研究肺部吸收机制:通过给予标记的药物,可以观察药物在肺泡和肺间质中的吸收和转运过程,也可以准确测定药物在肺泡、肺间质等不同部位的吸收速率和吸收程度,从而建立可靠的药物吸收模型。

    2、分析肺部代谢过程 :使用肺部给药技术,可以检测给药后药物在肺内代谢产物的形成和变化,帮助分析肺部代谢酶的活性和代谢途径,也可以分析药物在肺内的代谢动力学,包括代谢速率、代谢产物的形成和清除。

    3、评估肺部清除机制:肺部给药可作用于肺部,研究肺泡巨噬细胞、肺表面活性物质、纤毛运动等对药物清除的影响。

    4、探索肺部免疫反应和屏障功能:通过肺部给予免疫刺激药物,可以观察肺部免疫细胞的激活和炎症反应。使用标记的粒子或大分子作为探针,可以评估肺血管内皮、上皮等屏障结构对物质通透性的调控作用。

    5、建立肺部-全身循环的药动学模型:通过肺部给药数据,可以建立详细的肺部-血浆-全身循环的药动学模型,更准确地预测药物在体内的吸收、分布、代谢和清除过程。

     

    气管内给药示意图

    产品细节图片3

     

    肺纤维化大小鼠模型

    传统经典的复制肺纤维化大小鼠模型方法是通过气管内滴入博莱霉素溶液,其主要方式有两种:有创气管切开滴注以及无创经口气管滴注。有创气管切开滴注会对实验动物造成外源性损伤,增加了实验动物失血过多和感染的风险,无创经口气管滴注可引起明显的肺组织损伤与肺纤维化改变,但溶液呈液滴状进入肺内,其液滴相对较大,药物较集中,容易造成动物窒息死亡。

     

    无创经口气管内雾化给药则是一种更新、更有效的促进药物肺内均匀分布的给药方法,可以将博莱霉素溶液分散为体积更小的液滴,在气流的推动下,分散的液滴能进入各肺叶,并可到达外周肺组织,因此造成累及各肺叶、出现程度相近的纤维化改变、范围更弥散的肺组织损伤,更接近人类肺纤维化改变。气管内雾化博莱霉素溶液对小鼠的创伤小,很少出现窒息的情况,且不需穿刺气管,减少了动物的损伤与痛苦,降低了实验鼠的死亡率,并且药物剂量可以准确控制,实验结果重复性好,可作为复制肺纤维化大小鼠模型的优选方案。

     

    产品细节图片4

     

    由于大小鼠肺部疾病模型造模指向性强,需要直接将造模药物均匀输送到肺组织中。因此包括哮喘模型,肺纤维化模型,急性肺组织损伤模型,病毒感染模型等肺部疾病模型均可使用经口气管内雾化给药造模。

     

    相关产品推荐:

    合适的工具能帮助您更好地完成工作,气管插管台和小动物喉镜是帮助您完成肺部给药手术的得力助手,推荐与肺部干粉雾化给药器配合使用。

     

    气管插管平台

    气管插管平台支持小鼠、大鼠等小动物在一个稳定舒适的体位进行气管插管、药物灌注及其它类似实验操作。可以根据需要进行不同孔位的固定,进行多种操作角度的调节,满足不同实验类型以及实验动物种类的需求。双面操作模式,使得肺部给药操作更为流畅顺利,可与我公司小动物呼吸机、麻醉机、肺部定量给药器、喉镜等配合使用,也可根据要求进行定制。

     

    产品细节图片5

    CG-02型

    适用尺寸
    小鼠20×15×20cm
    大鼠22×21×28cm

     

    产品细节图片6

    CG-04型   

    适用尺寸
    小鼠20×15×20cm
    大鼠20×15×20cm

     

    产品细节图片7

    CG-06型

    适用尺寸
    小鼠15×12×15cm
    大鼠30×20×20cm

     

    小动物喉镜

    SR310型小动物喉镜,用于观察实验动物的喉部等结构,以进行肺部给药、经口气管插管等操作,适用于小鼠、大鼠、豚鼠,也可根据您的要求进行定制。采用光纤LED照明系统,提供清晰明亮的光线,给观察喉部、会厌等结构的操作人员提供了更好的视野。前端为不锈钢的叶型尖端,可随时拆卸或更换。操作柄的形状符合人体工程学,使操作更舒适方便。

     

    产品细节图片8

    产品特点:

    1.外壳采用金属材质,坚固耐用,易清洗                    
    2.操作柄的形状符合人体工程学的原理,手握舒适 
    3.专为大小鼠口腔结构设计的特制叶片,解决了因口腔太小难以进行气管插管的难题 
    4.具有大鼠叶片和小鼠叶片供选择 
    5.叶片采用不锈钢材质,最大限度地减少腐蚀,确保耐用 
    6.电池采用两节5号电池,方便更换

    产品细节图片9

     

    部分用户名单:

    产品细节图片10

     

    敬请关注玉研仪器微信号:

    产品细节图片11

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    • 作者
    • 内容
    • 询问日期
    图标文献和实验
    该产品被引用文献

    参考文献:

    1.Zhu, Chuanda, et al. "An elastase nanocomplex with metal cofactors for enhancement of target protein cleavage activity and synergistic antitumor effect." Chemical Engineering Journal (2024): 149902.doi:10.1016/j.cej.2024.149902.
    2.Zhu, Chuanda, et al. "An elastase nanocomplex with metal cofactors for enhancement of target protein cleavage activity and synergistic antitumor effect." Chemical Engineering Journal (2024): 149902,doi:10.1016/j.cej.2024.149902
    3.Han, Meng-Meng et al. “Inhaled nanoparticles for treating idiopathic pulmonary fibrosis by inhibiting honeycomb cyst and alveoli interstitium remodeling.” Journal of controlled release : official journal of the Controlled Release Society vol. 366 (2024): 732-745. doi:10.1016/j.jconrel.2024.01.032
    4.Feng, Xin et al. “First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung.” Bioengineering & translational medicine vol. 9,2 e10626. 29 Nov. 2023, doi:10.1002/btm2.10626
    5.Fan, Weiyang et al. “Naringenin regulates cigarette smoke extract-induced extracellular vesicles from alveolar macrophage to attenuate the mouse lung epithelial ferroptosis through activating EV miR-23a-3p/ACSL4 axis.” Phytomedicine : international journal of phytotherapy and phytopharmacology vol. 124 (2024): 155256. doi:10.1016/j.phymed.2023.155256
    6.Li, Cheng et al. “Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody.” Cell vol. 185,8 (2022): 1389-1401.e18. doi:10.1016/j.cell.2022.03.009
    7.Liu, Chang et al. “An Inhalable Hybrid Biomimetic Nanoplatform for Sequential Drug Release and Remodeling Lung Immune Homeostasis in Acute Lung Injury Treatment.” ACS nano vol. 17,12 (2023): 11626-11644. doi:10.1021/acsnano.3c02075
    8.Peng, Boya et al. “Robust delivery of RIG-I agonists using extracellular vesicles for anti-cancer immunotherapy.” Journal of extracellular vesicles vol. 11,4 (2022): e12187. doi:10.1002/jev2.12187
    9.Yang, Guang, et al. "Noncovalent co-assembly of aminoglycoside antibiotics@ tannic acid nanoparticles for off-the-shelf treatment of pulmonary and cutaneous infections." Chemical Engineering Journal 474 (2023): 145703.do:10.1016/j.cej.2023.145703.
    10.Santin, Yohan et al. “Inhalation of acidic nanoparticles prevents doxorubicin cardiotoxicity through improvement of lysosomal function.” Theranostics vol. 13,15 5435-5451. 2 Oct. 2023, doi:10.7150/thno.86310
    11.Sun, Han et al. “Application of Lung-Targeted Lipid Nanoparticle-delivered mRNA of soluble PD-L1 via SORT Technology in Acute Respiratory Distress Syndrome.” Theranostics vol. 13,14 4974-4992. 4 Sep. 2023, doi:10.7150/thno.86466
    12.Yue, Dayong et al. “Diesel exhaust PM2.5 greatly deteriorates fibrosis process in pre-existing pulmonary fibrosis via ferroptosis.” Environment international vol. 171 (2023): 107706. doi:10.1016/j.envint.2022.107706
    13.Zhang, Mengjun et al. “Airway epithelial cell-specific delivery of lipid nanoparticles loading siRNA for asthma treatment.” Journal of controlled release : official journal of the Controlled Release Society vol. 352 (2022): 422-437. doi:10.1016/j.jconrel.2022.10.020
    14.Gu, Peiyu et al. “Protective function of interleukin-22 in pulmonary fibrosis.” Clinical and translational medicine vol. 11,8 (2021): e509. doi:10.1002/ctm2.509
    15.Wu, Lan et al. “Poly(lactide-co-glycolide) Nanoparticles Mediate Sustained Gene Silencing and Improved Biocompatibility of siRNA Delivery Systems in Mouse Lungs after Pulmonary Administration.” ACS applied materials & interfaces vol. 13,3 (2021): 3722-3737. doi:10.1021/acsami.0c21259
    16.Tian, Xidong et al. “Pulmonary Delivery of Reactive Oxygen Species/Glutathione-Responsive Paclitaxel Dimeric Nanoparticles Improved Therapeutic Indices against Metastatic Lung Cancer.” ACS applied materials & interfaces vol. 13,48 (2021): 56858-56872. doi:10.1021/acsami.1c16351
    17.Lin, Wei-Ting et al. “Modulation of experimental acute lung injury by exosomal miR-7704 from mesenchymal stromal cells acts through M2 macrophage polarization.” Molecular therapy. Nucleic acids vol. 35,1 102102. 14 Dec. 2023, doi:10.1016/j.omtn.2023.102102
    18.Yang, Huilin et al. “Triptolide dose-dependently improves LPS-induced alveolar hypercoagulation and fibrinolysis inhibition through NF-κB inactivation in ARDS mice.” Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie vol. 139 (2021): 111569. doi:10.1016/j.biopha.2021.111569
    19.Feng, Xin et al. “First magnetic particle imaging to assess pulmonary vascular leakage in vivo in the acutely injured and fibrotic lung.” Bioengineering & translational medicine vol. 9,2 e10626. 29 Nov. 2023, doi:10.1002/btm2.10626
    20.Xiao, Xue et al. “SerpinB1 is required for Rev-erbα-mediated protection against acute lung injury induced by lipopolysaccharide-in mice.” British journal of pharmacology vol. 180,24 (2023): 3234-3253. doi:10.1111/bph.16175
    21.Su, Ruonan et al. “Venetoclax nanomedicine alleviates acute lung injury via increasing neutrophil apoptosis.” Biomaterials science vol. 9,13 (2021): 4746-4754. doi:10.1039/d1bm00481f
    22.Xu, Yingying et al. “PEGylated pH-responsive peptide-mRNA nano self-assemblies enhance the pulmonary delivery efficiency and safety of aerosolized mRNA.” Drug delivery vol. 30,1 (2023): 2219870. doi:10.1080/10717544.2023.2219870
    23.Wu, Yanqi et al. “SN50 attenuates alveolar hypercoagulation and fibrinolysis inhibition in acute respiratory distress syndrome mice through inhibiting NF-κB p65 translocation.” Respiratory research vol. 21,1 130. 27 May. 2020, doi:10.1186/s12931-020-01372-6
    Chen, Huanjie et al. “Enhanced secretion of hepatocyte growth factor in human umbilical cord mesenchymal stem cells ameliorates pulmonary fibrosis induced by bleomycin in rats.” Frontiers in pharmacology vol. 13 1070736. 6 Jan. 2023, doi:10.3389/fphar.2022.1070736

     

    相关实验
    • 面神经手术

      ,要直在面神经损害变为不可逆性之前作出判断,电诊断的目的在于此行。当前用于观神经颅内和颞内段的电诊断试验有lauman jcngkees神经兴奋试验(nerve excitability test,net)、may最大刺激试验(maximal stimulation test,mst)和esslen-fisch神经电图(eletroneuronography,enog). (1)神经兴奋性试验:应用恒流电刺激,最大输出20ma,刺激电极放在神经诸分支上的皮肤表面。电流

    图标技术资料

    资料下载:

    20150831084240_57697.gif 附 (下载 0 次)

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥88000
    上海净信实业发展有限公司
    2025年12月06日询价
    询价
    埃克森(北京)科技有限公司
    2025年09月21日询价
    询价
    广州科适特科学仪器有限公司
    2026年01月04日询价
    询价
    普兰德(上海)贸易有限公司
    2025年12月22日询价
    文献支持
    PennCentury 喷雾器,肺部给药器,气管雾化给药,多篇高分文献支持
    ¥6000 - 16000