手机验证
二硬脂酰磷脂酰甘油DSPG-N
a遮光低温保存
三年
1, 2-distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol)
9999
进口
4537-78-4
件/件
规格: | 件 | 产品价格: | ¥10.0 |
---|---|---|---|
规格: | 件 | 产品价格: | ¥99.0 |
1、中文通用名称:二硬脂酰磷脂酰甘油
2、化学式:1,2-二硬脂酰-sn-甘油-3-磷酸甘油,钠盐
3、英文通用名称:DSPG-Na
4、CAS号:4537-78-4
5、分子量:801.08
6、分子式:C42H82O10PNa
7、产品性能:白色粉末
8、保存条件:室温或低于室温储存
9、货号:S02004
10、结构式:
11、登记号:F20190000439(A)
关于AVT
艾伟拓(上海)医药科技有限公司成立于2007年,服务中国制剂产业,致力为高端制剂提供特种辅料和高品质服务。 艾伟拓精准定位注射用辅料,六大产品线:核酸递送类全套辅料;生物制剂辅料;脂质体用合成磷脂;脂肪乳用天然磷脂;医美用透明质酸等高分子材料;新型疫苗佐剂,已覆盖3800+终端客户、1000+药厂客户、1700+科研机构、16+高校采购平台。
Founded in 2007, AVT (Shanghai) Pharmaceutical Tech Co., Ltd. (hereinafter referred to as AVT) specializes in providing high quality excipients and services for advanced injections.
The company’s products range from high quality traditional injection grade phospholipid excipients applied for liposomes and fat emulsions, such as natural phospholipids, HSPC, DSPE-PEG2000, CHO, etc.; as well as protective agents and buffers salts used in vaccines, antibody proteins, antibody-conjugated drugs and other biological formulations, such as trehalose, sucrose, Tris Base,HEPES, etc.
AVT has always pursued to develop high purity, low endotoxin excipients aimed for injections. Our products are manufactured in accordance with GMP guidelines and under strict in-house quality control standards, these products can meet requirements of mainstream pharmacopoeias including ChP, NF, EP, and JP. We have established steady cooperation with domestic mainstream pharmaceutical companies and emerging biological companies.
风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。
[1] CHEN G, KANG W, LI W, et al. Oral delivery of protein and peptide drugs: from non-specific formulation approaches to intestinal cell targeting strategies [J]. Theranostics, 2022, 12(3): 1419-1439.
[2] PARK K, KWON I C, PARK K. Oral protein delivery: current status and future prospect [J]. React Funct Polym, 2011, 71(3): 280-287.
[3] LUNDQUIST P , ARTURSSON P . Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues [J]. Adv Drug Deliv Rev, 2016, 106(Part B): 256-276.
[4] TONG T, W ANG L, YOU X, et al. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability [J]. Biomater Sci, 2020, 8(21): 5804-5823.
[5] SILV A A C, SANTOS D, FERREIRA D, et al. Lipid-based nanocarriers as an alternative for oral delivery of poorly water- soluble drugs: peroral and mucosal routes [J]. Curr Med Chem, 2012, 19(26): 4495-4510.
[6] SARMENTO B, MAZZAGLIA D, BONFERONI M C, et al. Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system [J]. Carbohyd Polymers, 2011, 84(3): 919-925.
[7] HADDADZADEGAN S, DORKOOSH F, BERNKOP-SCHNÜRCH A. Oral delivery of therapeutic peptides and proteins: technology landscape of lipid-based
nanocarriers [J]. Adv Drug Deliv Rev, 2022, 182: 114097.
[8] SHAN W, ZHU X, LIU M, et al. Overcoming the diffusion barrier of mucus and
absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin [J]. ACS Nano, 2015, 9(3): 2345-2356.
[9] ZUPANČIČ O, BERNKOP-SCHNÜRCH A. Lipophilic peptide character - what
oral barriers fear the most [J]. J Control Release, 2017, 255: 242-257.
[10] RISTROPH K D, PRUD'HOMME R K. Hydrophobic ion pairing: encapsulating small molecules, peptides, and proteins into nanocarriers [J]. Nanoscale Adv, 2019, 1(11): 4207-4237.
[11] MUNTONI E, MARINI E, AHMADI N, et al. Lipid nanoparticles as vehicles for oral delivery of insulin and insulin analogs: preliminary ex vivo and in vivo studies [J]. Acta Diabetol, 2019, 56(12): 1283-1292.
[12] SMART A L, GAISFORD S, BASIT A W. Oral peptide and protein delivery: intestinal obstacles and commercial prospects [J]. Expert Opin Drug Deliv, 2014, 11(8): 1323-1335.
[13] ARNOLD Y E, IMANIDIS G, KUENTZ M. In vitro digestion kinetics of
excipients for lipid-based drug delivery and introduction of a relative lipolysis half life [J]. Drug Dev Ind Pharm, 2012, 38(10): 1262-1269.
[14] DAMGÉ C, REIS C P , MAINCENT P . Nanoparticle strategies for the oral delivery
of insulin [J]. Expert Opin Drug Deliv, 2008, 5(1): 45-68.
[15] BA TTAGLIA L, GALLARA TE M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery [J]. Expert Opin Drug Deliv, 2012, 9(5): 497-508.
[16] DAS S, CHAUDHURY A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery [J]. AAPS PharmSciTech, 2011, 12(1): 62-76.
[17] MEANEY C M, O'DRISCOLL C M. A comparison of the permeation
enhancement potential of simple bile salt and mixed bile salt: fatty acid micellar systems using the CaCo-2 cell culture model [J]. Int J Pharm, 2000, 207(1/2): 21-30.
[18] ZHANG Z, GAO F, JIANG S, et al. Bile salts enhance the intestinal absorption of lipophilic drug loaded lipid nanocarriers: mechanism and effect in rats [J]. Int J Pharm, 2013, 452(1/2): 374-381.
[19] MCCLEMENTS D J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: a review [J]. Adv Colloid Interface Sci, 2018, 253: 1-22.
[20] MUCHOW M, MAINCENT P , MULLER R H. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery [J]. Drug Dev Ind Pharm, 2008, 34(12): 1394-1405.
[21] SAINI A, PANW AR D, PANESAR P S, et al. Encapsulation of functional ingredients in lipidic nanocarriers and antimicrobial applications: a review [J]. Environ Chem Lett, 2021, 19: 1107-1134.
[22] BANERJEE S, PILLAI J. Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs [J]. Expert Opin Drug Metab Toxicol, 2019, 15(6): 499-515.