相关产品推荐更多 >
万千商家帮你免费找货
0 人在求购买到急需产品
- 详细信息
- 文献和实验
- 技术资料
- 英文名:
Reh
- 库存:
大量
- 供应商:
中乔新舟
- 细胞类型:
细胞系
- 品系:
human
- 组织来源:
human
- 相关疾病:
否
- 物种来源:
human
- 免疫类型:
否
- 细胞形态:
咨询销售
- 器官来源:
human
- 运输方式:
T25瓶运输
- 年限:
5-10年
- 生长状态:
贴壁生长
- 规格:
5 x 10^5 cells/vial
|
产品名称 |
Reh人急性非B非T淋巴细胞白血病 |
|
货号 |
ZQ0428 |
|
产品介绍
|
Reh细胞是一种来源于急性淋巴细胞性白血病(ALL)患者的细胞系,具有淋巴母细胞的形态,属于前体B细胞,但既不属于B细胞也不属于T细胞。这种细胞系在医学研究中非常有用,尤其是在研究免疫系统疾病和癌症方面。 抗原、基因表达:CD3 A (17%) 、B (17%)、 C (20%);CD4 (15%);CD10 (55%) 注意:该细胞在1640(含1.5g/LNaHCO3)培养基中生长良好,大部分品牌的1640含有较高浓度的NaHCO3(3.7g/L),若使用1640(3.7g/L NaHCO3)培养基培养细胞时需要提高CO2浓度(7%-10%)。
|
|
种属 |
人 |
|
性别/年龄 |
15岁 |
|
组织 |
外周血 |
|
疾病 |
急性淋巴细胞白血病;非T;非B |
|
细胞类型 |
肿瘤细胞 |
|
形态学 |
成淋巴细胞 |
|
生长方式 |
悬浮 |
|
倍增时间 |
大约30~70小时 |
|
培养基和添加剂 |
RPMI-1640(ATCC改良款)(品牌:中乔新舟 货号:ZQ-200F)+10%胎牛血清(中乔新舟 货号:ZQ0500)+1%P/S(中乔新舟 货号:CSP006) |
|
推荐完全培养基货号 |
ZM0428 |
|
生物安全等级 |
BSL-1 |
|
STR位点信息 |
D5S818: 11, 13 D13S317: 11, 13 D7S820: 9, 12 D16S539: 9 vWA: 14, 15 THO1: 7 TPOX: 8 CSF1PO: 10, 11, 12 Amelogenin: X |
|
培养条件 |
95%空气,5%二氧化碳;37℃ |
|
抗原表达/受体表达 |
*** |
|
基因表达 |
*** |
|
保藏机构 |
ATCC; CRL-8286 DSMZ; ACC-22 |
|
供应限制 |
仅供科研使用 |
上海中乔新舟生物科技有限公司成立于2011年,历经十多年发展,主要专注于细胞生物学产品的研究和开发,专注于为药企、各类科研机构及CRO企业提供符合标准规范的细胞培养服务、细胞培养基、细胞检测试剂盒、细胞培养试剂,胎牛血清和细胞生物学技术服务等。
公司一直致力于为高等院校、研究机构、医院、CRO及CDMO企业提供细胞培养完整解决方案,这些产品旨在满足细胞培养的多样需求,确保实验和研究的有效进行。引用中乔新舟(ZQXZBIO)产品和服务的文献超数千篇。

产品服务
细胞资源:原代细胞、细胞株、干细胞、示踪细胞、耐药株细胞、永生化细胞等基因工程细胞。
试剂产品:胎牛血清、完全培养基(适用于原代细胞及细胞株)、无血清培养基、基础培养基、细胞转染试剂、重组因子、胰酶和双抗等等细胞培养所有实验相关产品。
技术服务:稳转株构建、原代细胞分离、特殊培养基定制服务、细胞检测等。

目前产品已经畅销国内30多个省市,与客户建立长期的合作伙伴关系,共同实现成功。全体员工将不懈努力,继续为科研人员提供优良的产品和服务,致力成为全球细胞培养领域的参与者。

企业愿景
致力于成为国内细胞培养基产业的佼佼者,生物医药领域上游原材料的优良提供商。
企业使命
成长为专业细胞系及原代细胞培养供应商、专业细胞培养基及培养试剂生产商。
企业荣誉


风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。
文献和实验PubMed=194778; DOI=10.1016/0014-2964(77)90085-8
Rosenfeld C., Goutner A., Venuat A.-M., Choquet C., Pico J.-L., Dore J.-F., Liabeuf A., Durandy A., Desgrange C., de The G.B.
An effect human leukaemic cell line: Reh.
Eur. J. Cancer 13:377-379(1977)
PubMed=197411; DOI=10.1038/267841a0
Rosenfeld C., Goutner A., Choquet C., Venuat A.-M., Kayibanda B., Pico J.-L., Greaves M.F.
Phenotypic characterisation of a unique non-T, non-B acute lymphoblastic leukaemia cell line.
Nature 267:841-843(1977)
DOI=10.1007/BF00204739
Bertoglio J., Guibout C., Dore J.-F., Rosenfeld C.
Further characterization of a non-T, non-B acute lymphoblastic leukaemia cell line (Reh). Reactivity with human sera cytotoxic for leukaemia cells.
Cancer Immunol. Immunother. 4:193-196(1978)
PubMed=279400
Lorans G., Rosenfeld C., Petitou M., Phan-Dinh-Tuy F., Mathe G.
Metabolism of proline in a human leukemic lymphoblastoid cell line.
Cancer Res. 38:3950-3953(1978)
PubMed=2985879; DOI=10.1016/0145-2126(85)90084-0
Drexler H.G., Gaedicke G., Minowada J.
Isoenzyme studies in human leukemia-lymphoma cell lines -- 1 carboxylic esterase.
Leuk. Res. 9:209-229(1985)
PubMed=3159941; DOI=10.1016/0145-2126(85)90134-1
Drexler H.G., Gaedicke G., Minowada J.
Isoenzyme studies in human leukemia-lymphoma cell lines -- III Beta-hexosaminidase (E.C. 3.2.1.30).
Leuk. Res. 9:549-559(1985)
PubMed=3866637
Sharif A., Driancourt C., Billard M., Rosenfeld C., Goussault Y., Bourrillon R.
In vitro study of the comparative behaviour of a human acute lymphoblastic leukemia cell line and a reference normal cell line towards the effects of a mitogenic lectin.
Cancer Biochem. Biophys. 8:143-152(1985)
PubMed=3874327; DOI=10.1016/0145-2126(85)90133-x
Drexler H.G., Gaedicke G., Minowada J.
Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.
Leuk. Res. 9:537-548(1985)
PubMed=2140233; DOI=10.1111/j.1440-1827.1990.tb01549.x
Nakano A., Harada T., Morikawa S., Kato Y.
Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines.
Acta Pathol. Jpn. 40:107-115(1990)
PubMed=7630190
Zhou M.-X., Gu L.-B., James C.D., He J., Yeager A.M., Smith S.D., Findley H.W.
Homozygous deletions of the CDKN2 (MTS1/p16ink4) gene in cell lines established from children with acute lymphoblastic leukemia.
Leukemia 9:1159-1161(1995)
PubMed=7888679; DOI=10.1182/blood.V85.6.1608.bloodjournal8561608
Zhou M.-X., Yeager A.M., Smith S.D., Findley H.W.
Overexpression of the MDM2 gene by childhood acute lymphoblastic leukemia cells expressing the wild-type p53 gene.
Blood 85:1608-1614(1995)
PubMed=8704231; DOI=10.1182/blood.V88.3.785.785
Kim D.-H., Moldwin R.L., Vignon C., Bohlander S.K., Suto Y., Giordano L., Gupta R., Fears S., Nucifora G., Rowley J.D., Smith S.D.
TEL-AML1 translocations with TEL and CDKN2 inactivation in acute lymphoblastic leukemia cell lines.
Blood 88:785-794(1996)
PubMed=8847894
Tani A., Tatsumi E., Nakamura F., Kumagai S., Kosaka Y., Sano K., Nakamura H., Amakawa R., Ohno H.
Sensitivity to dexamethasone and absence of bcl-2 protein in Burkitt's lymphoma cell line (Black93) derived from a patient with acute tumor lysis syndrome: comparative study with other BL and non-BL lines.
Leukemia 10:1592-1603(1996)
PubMed=9067587; DOI=10.1038/sj.leu.2400571
Uphoff C.C., MacLeod R.A.F., Denkmann S.A., Golub T.R., Borkhardt A., Janssen J.W.G., Drexler H.G.
Occurrence of TEL-AML1 fusion resulting from (12;21) translocation in human early B-lineage leukemia cell lines.
Leukemia 11:441-447(1997)
PubMed=9108419; DOI=10.1182/blood.V89.8.2986
Findley H.W., Gu L.-B., Yeager A.M., Zhou M.-X.
Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia.
Blood 89:2986-2993(1997)
PubMed=9510473; DOI=10.1111/j.1349-7006.1998.tb00476.x
Hosoya N., Hangaishi A., Ogawa S., Miyagawa K., Mitani K., Yazaki Y., Hirai H.
Frameshift mutations of the hMSH6 gene in human leukemia cell lines.
Jpn. J. Cancer Res. 89:33-39(1998)
PubMed=9680106; DOI=10.1016/S0145-2126(98)00050-2
Matsuo Y., Drexler H.G.
Establishment and characterization of human B cell precursor-leukemia cell lines.
Leuk. Res. 22:567-579(1998)
PubMed=9823951; DOI=10.1038/sj.leu.2401198
Zhou M.-X., Gu L.-B., Yeager A.M., Findley H.W.
Sensitivity to Fas-mediated apoptosis in pediatric acute lymphoblastic leukemia is associated with a mutant p53 phenotype and absence of Bcl-2 expression.
Leukemia 12:1756-1763(1998)
PubMed=10490826; DOI=10.1038/sj.onc.1202874
Fu X.-Y., McGrath S., Pasillas M., Nakazawa S., Kamps M.P.
EB-1, a tyrosine kinase signal transduction gene, is transcriptionally activated in the t(1;19) subset of pre-B ALL, which express oncoprotein E2a-Pbx1.
Oncogene 18:4920-4929(1999)
PubMed=10739008; DOI=10.1016/S0145-2126(99)00182-4
Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.
Leuk. Res. 24:255-262(2000)
DOI=10.1016/B978-0-12-221970-2.50457-5
Drexler H.G.
The leukemia-lymphoma cell line factsbook.
(In) ISBN 9780122219702; pp.1-733; Academic Press; London (2001)
PubMed=11226526; DOI=10.1016/S0145-2126(00)00121-1
Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
Corrigendum to: Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines Leukemia Research 24 (2000),255-262.
Leuk. Res. 25:275-278(2001)
PubMed=14504097; DOI=10.1182/blood-2003-02-0418
Taketani T., Taki T., Sugita K., Furuichi Y., Ishii E., Hanada R., Tsuchida M., Sugita K., Ida K., Hayashi Y.
FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy.
Blood 103:1085-1088(2004)
PubMed=15843827; DOI=10.1038/sj.leu.2403749
Andersson A., Eden P., Lindgren D., Nilsson J., Lassen C., Heldrup J., Fontes M., Borg A., Mitelman F., Johansson B., Hoglund M., Fioretos T.
Gene expression profiling of leukemic cell lines reveals conserved molecular signatures among subtypes with specific genetic aberrations.
Leukemia 19:1042-1050(2005)
PubMed=16408098; DOI=10.1038/sj.leu.2404081
Quentmeier H., MacLeod R.A.F., Zaborski M., Drexler H.G.
JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders.
Leukemia 20:471-476(2006)
PubMed=16523483; DOI=10.1002/gcc.20317
Horsley S.W., Mackay A., Iravani M., Fenwick K., Valgeirsson H., Dexter T.J., Ashworth A., Kearney L.
Array CGH of fusion gene-positive leukemia-derived cell lines reveals cryptic regions of genomic gain and loss.
Genes Chromosomes Cancer 45:554-564(2006)
PubMed=20164919; DOI=10.1038/nature08768
Bignell G.R., Greenman C.D., Davies H., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Signatures of mutation and selection in the cancer genome.
Nature 463:893-898(2010)
PubMed=20575032; DOI=10.1002/ajh.21738
Inukai T., Zhang X.-R., Kameyama T., Suzuki Y., Yoshikawa K., Kuroda I., Nemoto A., Akahane K., Sato H., Goi K., Nakamoto K., Hamada J.-i., Tada M., Moriuchi T., Sugita K.
A specific linkage between the incidence of TP53 mutations and type of chromosomal translocations in B-precursor acute lymphoblastic leukemia cell lines.
Am. J. Hematol. 85:535-537(2010)
PubMed=21552520; DOI=10.1371/journal.pone.0019169
Gu T.-L., Nardone J., Wang Y., Loriaux M., Villen J., Beausoleil S.A., Tucker M., Kornhauser J.M., Ren J.-M., MacNeill J., Gygi S.P., Druker B.J., Heinrich M.C., Rush J., Polakiewicz R.D.
Survey of activated FLT3 signaling in leukemia.
PLoS ONE 6:E19169-E19169(2011)
PubMed=22460905; DOI=10.1038/nature11003
Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Nature 483:603-607(2012)
PubMed=24056532; DOI=10.1101/gr.159913.113
Potter N.E., Ermini L., Papaemmanuil E., Cazzaniga G., Vijayaraghavan G., Titley I., Ford A., Campbell P.J., Kearney L., Greaves M.F.
Single-cell mutational profiling and clonal phylogeny in cancer.
Genome Res. 23:2115-2125(2013)
三句话读懂一篇 CNS:复旦大学研究表明,种花、种草有助预防多种疾病;打呼噜可能增加老年痴呆的风险
and type 2 inflammation。 该研究发现菊粉通过改变特定肠道菌群的代谢,使得肠道中的拟杆菌(Bacteroidetes)显著增加、嗜酸性粒细胞水平也大幅升高,能在肺和肠道等部位诱导过敏相关的 2 型炎症反应,帮助人体抵御寄生蠕虫感染。 图 5:来源 Nature 6. JCO:发现 CAR-T 疗法治疗白血病安全有效 每年难治性血液病或高风险 B 急性淋巴细胞白血病夺去了数万人的宝贵生命。 2022 年 11 月 8 日,上海交通大学, 四川大学,香港大学及圣裘德儿童研究
细胞,利用药物 aphidicolin 诱导 293T 为非增殖细胞。实验结果如下: Day3 Day8 Day14 数据显示,IDLV 感染非增殖细胞 14 天依然维持稳定表达能力;而感染增殖细胞时,随着细胞的复制以及传代,8-14 日病毒颗粒已丢失殆尽。 2. 非整合特性验证 分别采用 LV、IDLV 感染 293T 细胞,观察感染后 3、6、8 天的病毒基因组相对含量数值的变化(QPCR 检测病毒基因组与内参 actin 的相对值): QPCR 检测病毒基因组数据 数据表明,在增殖的 293T
Auer小体: 是白血病细胞中的棒状小体。瑞氏染色呈紫红或红色,由嗜天青颗粒融合而成,含核糖核酸及脂类,过氧化物酶阳性暗影医`学教育网搜集整理。这种小体出现在急性粒细胞白血病、急性单核细胞白血病等急非淋巴细胞白血病中,不出现在急性淋巴细胞白血病中,对急性白血病的诊断及急性非淋巴细胞白血病的鉴别诊断具有重要意义。
技术资料暂无技术资料 索取技术资料










