相关产品推荐更多 >
万千商家帮你免费找货
0 人在求购买到急需产品
- 详细信息
- 文献和实验
- 技术资料
- 品系:
详见细胞说明资料
- 细胞类型:
详见细胞说明资料
- 肿瘤类型:
详见细胞说明资料
- 供应商:
上海冠导生物工程有限公司
- 库存:
≥100瓶
- 生长状态:
详见细胞说明资料
- 年限:
详见细胞说明资料
- 运输方式:
常温运输【复苏细胞】或干冰运输【冻存细胞】
- 器官来源:
详见细胞说明资料
- 是否是肿瘤细胞:
详见细胞说明资料
- 细胞形态:
详见细胞说明资料
- 免疫类型:
详见细胞说明资料
- 物种来源:
详见细胞说明资料
- 相关疾病:
详见细胞说明资料
- 组织来源:
详见细胞说明资料
- 英文名:
Kasumi-6人急性髓系白血病细胞系
- 规格:
1*10(6)Cellls/瓶
传代比例:1:2-1:4(首次传代建议1:2)
生长特性:贴壁生长或悬浮生长
换液周期:每周2-3次
公司细胞库冻存并保种有2300多种各类细胞系。针对每种不同的细胞系,公司摸索并积累了大量细胞培养条件和YOU化参数,为您的细胞实验保驾护航。细胞培养是生命科学研究中Zui基础、也是Zui常用的实验手段。从冻存→复苏→传代→实验,在每一次细胞培养的过程中我们都是精心呵护,小心培养,心里都是默默承诺:我要护你一世周全!可是可是……无数次细胞都因污染而离我而去,投入的不只是我们貌美如花的青春,还有那一去不复返的经费!在细胞生物学,生物化学,免疫学,神经生物学,病理学……只要涉及细胞的研究领域,都面临着支原体污染的威胁。在众多污染物中,也就属支原体Zui狡猾了,他Zui善于隐藏自己,因为被支原体污染的细胞不会马上死亡,但会改变细胞的新陈代谢,甚至会改变细胞的基因表达谱,我们就这样被欺骗了无数次,谁让我们就是个看“颜值”的花痴了。可是我们通过被虐了几百次的经验中总结出来,当你的细胞出现了这些症状时:生长速率改变;活性减弱;形态改变;染色体畸变;转染效率显著降低;细胞复苏后存活率降低……。那你就得千万小心了,也许你的细胞已经被支原体欺凌了!
Kasumi-6人急性髓系白血病细胞系
背景信息:详见相关文献介绍
┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
T-ALL 1 Cells;背景说明:该细胞源于一名复发T-ALL(急性T淋巴细胞性白血病)的儿童的外周血;具有很强的细胞毒性,体内体外实验中都能破坏肿瘤细胞;IL-2可使细胞更好地生长;α/β TCR阳性,γ/δ TCR阴性;可产生IFNγ、TNF-α和GM-CSF。;传代方法:维持细胞密度在4×105-1×106 cells/ml之间,2-3天换液1次 ;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:ZR75-30 Cells、NUGC-3 Cells、OCI-Ly 19 Cells
H526 Cells;背景说明:详见相关文献介绍;传代方法:每周换液2-3次。;生长特性:悬浮生长 ;形态特性:上皮细胞;相关产品有:PLCPRF5 Cells、HMy2.CIR Cells、GTL-16 Cells
MB-49 Cells;背景说明:膀胱癌;雄性;C57BL/Icrfa(t);传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HT29 Cells、KOPN-8 Cells、UC-3 Cells
GM01232 Cells;背景说明:1971年1月,该细胞由ReidTW及其同事从病人右眼切除的肿瘤进行原代培养建立而成,此病人有很强的视网膜母细胞瘤的母系家族遗传性。该细胞的超微结构,如核膜内折、三层膜结构、大的被膜小泡、环孔板、微管、中心粒、基粒等都与原始肿瘤相似。;传代方法:1:2传代;生长特性:悬浮生长;形态特性:圆形,成簇生长;相关产品有:Tu212 Cells、32D.3 Cells、J82 COT Cells
产品包装:复苏发货:T25培养瓶(一瓶)或冻存发货:1ml冻存管(两支)
来源说明:细胞主要来源ATCC、ECACC、DSMZ、RIKEN等细胞库
Kasumi-6人急性髓系白血病细胞系
细胞的冻存:目前,细胞冻存Zui常用的技术是冷冻保存法,主要采用加适量保护剂的缓慢冷冻法冻存细胞。主要操作步骤为:(1)选择处于对数生长期的细胞,在冻存前一天ZuiHAO换。将多个培养瓶中的细胞培养去掉,用0.25%胰蛋白酶消化。适时去掉胰蛋白酶,加入少量新培养。用吸管吸取培养反复吹打瓶壁上的细胞,使其成为均匀分散的细胞悬。悬浮生产细胞则不要消化处理。然后将细胞收集于离心管中离心(1000r/min,10分钟)。(2)去上清,加入含20%小牛血清的完全培养基,于4℃预冷15分钟后,逐滴加入已无菌的DMSO或甘油,用吸管轻轻吹打使细胞均匀,细胞浓度为3×10(6)~1×10(7)/mL之间。(3)将上述细胞分装于安瓿或专用冷冻塑料管中,安瓿装1~1.5mL在火焰喷灯上封口,封口处要完全封闭,圆滑无勾。冷冻管要将盖子盖紧,并标记HAO细胞名称和冻存日期,同时作HAO登记(日期、细胞种类及代次、冻存支数)。(4)将装HAO细胞的安瓿或冻存管装入沙布袋内;置于容器颈口处存放过夜,次日转入中。采用控制降温速度的方法也可采用下列步骤:先将安瓿置入4℃冰箱中2~3小时,再移至冰箱冷冻室内3~4小时,再吊入容器颈气态部分存放2小时,Zui后沉入中。细胞冻存在中可以长期保存,但为妥善起见,冻存半年后,ZuiHAO取出一只安瓿细胞复苏培养,观察生长情况,然后再继续冻存。
MS1 Cells;背景说明:MS1是1994年建株的胰岛内皮细胞株。原代培养的胰岛内皮细胞用抗G418的温度敏感型SV40大T抗原(tsA-58-3)转染。抗性克隆用克隆环分离,并筛选吸收dil-Ac-LDL的。这株细胞保留了内皮细胞的许多特性,如吸收乙酰化LDL和表达八因子相关抗原及BEGF受体。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:H1522 Cells、MS-751 Cells、YES-2 Cells
Hs-611-T Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;每周换液2-3次。;生长特性:混合型;形态特性:淋巴母细胞样;相关产品有:HCC-202 Cells、H-1618 Cells、Sol8 Cells
184A1 Cells;背景说明:乳腺上皮细胞;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Hep 3B2_1-7 Cells、BALB/c 3T3 clone A31 Cells、RK13 Cells
物种来源:人源、鼠源等其它物种来源
┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
形态特性:上皮细胞样或成纤维细胞样或淋巴母细胞样
购买细胞注意事项:1)收到细胞后首先观察细胞瓶是否完HAO,培养是否有漏、浑浊等现象,若有上述现象发生请及时和我们联系;2)仔细阅读细胞说明,了解细胞相关信息,如细胞形态、所用培养基、血清比例、所需细胞因子等;3)用75%酒精擦拭细胞瓶表面,显微镜下观察细胞状态。因运输问题贴壁细胞会有少量从瓶壁脱落,将细胞置于培养箱内静置培养过夜,隔天再取出观察。此时多数细胞均会贴壁,若细胞仍不能贴壁请用台盼蓝染色测定细胞活力,如果证实细胞活力正常,请将细胞离心后用新鲜培养基再次贴壁培养;如果染色结果显示细胞无活力,请拍下照片及时和我们联系,信息确认后我们为您再免费寄送一次;4)建议客户收到细胞后前3天各拍几张细胞照片,记录细胞状态,便于和公司技术部沟通交流。【细胞传代操作步骤】一、贴壁细胞传代:1)提前将培养基、PBS放入37℃水浴锅内预热,用75%酒精擦拭后再放入超净台内;2)吸除或倒掉细胞瓶内旧培养,加少量PBS润洗细胞;3)加入适量胰酶,使胰酶的量能盖住细胞,37℃孵育,每隔2~3min显微镜下观察,待贴壁细胞间间隙变大、细胞趋于圆形但还未漂起时弃去胰酶,加入新鲜培养基,晃动细胞瓶,终止胰酶作用;4)用吸管小心吹打贴壁的细胞,制成细胞悬。控制吹打的力度,避免产生大量的气泡;5)将细胞悬分别接种到另外的2~3个细胞瓶内,加入新鲜培养基,置37℃温箱培养,隔天观察贴壁生长情况。二、悬浮细胞传代:1)将细胞悬转移到无菌离心管内,1000rpm离心5min;2)弃去上清,加入新鲜的培养基,用吸管小心吹散沉淀,制成细胞悬;3)将细胞悬分别接种到另外的2~3个细胞瓶内,加入新鲜培养基,置37℃温箱培养。
NCI-H2405 Cells;背景说明:详见相关文献介绍;传代方法:1:5-1:8传代;生长特性:混合生长;形态特性:详见产品说明;相关产品有:MDA-MB-134VI Cells、OV3121 Cells、MHHCALL2 Cells
WERI Rb-1 Cells;背景说明:WERI-Rb-I细胞株是1974年R.M. McFall 和 T.W. Sery建立的两株人眼癌细胞系中的一株。 细胞能在Difco Bacto-Agar中存活但不形成克隆。 扫描电镜显示在表面囊泡,板状伪足和微绒毛在数量上和频率上的改变。 细胞分化研究,肿瘤治疗的动物模型和生化评价都涉及这株细胞。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:圆形细胞聚集成葡萄状;相关产品有:LY Cells、SW1116 Cells、U-343 MG Cells
SW-1463 Cells;背景说明:详见相关文献介绍;传代方法:1:3—1:8传代,每周换液1-2次;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:HO1-N-1 Cells、MCF.7 Cells、BEAS2B Cells
Mel RM Cells;背景说明:黑色素瘤;神经节转移;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MFC Cells、HEK-293-F Cells、H2135 Cells
NCI-H2330 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SW 403 Cells、NCI-H820 Cells、MFC Cells
VMCUB-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Huh 7.5.1 Cells、NB1RGB Cells、NOR10 Cells
HCC1954 BL Cells;背景说明:外周血B淋巴细胞;EBV转化;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:Sun Yat-sen university Ophtalmic center-Retinoblastoma 50 Cells、HPC-Y5 Cells、SW 900 Cells
KU 812 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代。3天内可长满;生长特性:悬浮生长;形态特性:骨髓母细胞;相关产品有:A9 (Hamprecht) Cells、SK-MEL-28 Cells、SKUT-1 Cells
HBL1 Cells;背景说明:弥漫大B淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:U2-OS Cells、VSMC Cells、D324 Cells
H1385 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:MM.1S Cells、MD Anderson-Metastatic Breast-175-VIII Cells、HeLa229 Cells
IHC-ST1 Cells;背景说明:肝内胆管癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Be-Wo Cells、H-3255 Cells、HPC-Y5 Cells
TGW-nu Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:神经元细胞;相关产品有:SKNEP Cells、OCI Ly10 Cells、TE-85 Cells
HS-683 Cells;背景说明:该细胞源自76岁白人男性的左颞叶侧胶质瘤组织,有微绒毛,无桥粒。 ;传代方法:1:4传代,每周换液2次;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:HTori3 Cells、OK-WT Cells、HCC 38 Cells
UM-UC-14 Cells;背景说明:肾癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:CF-1 MEF Cells、GL261 Cells、ZYM-DIEC02 Cells
746T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:MNNG-HOS (Cl#5) Cells、PC3M-2B4 Cells、VM-CUB1 Cells
Kasumi-6人急性髓系白血病细胞系
SW579 Cells;背景说明:在裸鼠中成瘤(产生三级恶性纺锤状巨细胞瘤)。 ;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:Human ErythroLeukemia Cells、HS766T Cells、Ej138 Cells
EOMA Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:P3/NSI/1-AG4-1 Cells、OB2 Cells、H-548 Cells
24B>Ras attP-G1-CloneG1 Cells(拥有STR基因鉴定图谱)
Abcam HeLa PSENEN KO Cells(拥有STR基因鉴定图谱)
AG24322 Cells(拥有STR基因鉴定图谱)
BayGenomics ES cell line RRI002 Cells(拥有STR基因鉴定图谱)
BayGenomics ES cell line XH413 Cells(拥有STR基因鉴定图谱)
C1R-A24 Cells(拥有STR基因鉴定图谱)
┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
D98/HR-1 Cells(拥有STR基因鉴定图谱)
ES5.4E3 Cells(拥有STR基因鉴定图谱)
GM06407 Cells(拥有STR基因鉴定图谱)
SHSY5Y Cells;背景说明:据报道,该细胞的密度可高达1×106cells/cm2,具有中等水平的多巴胺β羟化酶的活性。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:H1666 Cells、MEF Cells、FL-83B Cells
GTL-16 Cells;背景说明:胃癌;肝转移;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:H35 Reuber Cells、SNG-M Cells、Colo205 Cells
TE 32 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代,3-4天换液1次。;生长特性:贴壁生长;形态特性:梭型和大的多核细胞;相关产品有:Pro-5 Lec1.3c Cells、T-ALL 1 Cells、NCI-H23 Cells
HT 1376 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:PG-4(S+L-) Cells、Panc-327 Cells、NCIH1993 Cells
NCI-SNU-1 Cells;背景说明:详见相关文献介绍;传代方法:2-3天换液1次。;生长特性:悬浮聚集;形态特性:上皮细胞;相关产品有:HCC-78 Cells、MGSMC Cells、MH7A Cells
SKG-IIIa Cells;背景说明:详见相关文献介绍;传代方法:2x10^4 cells/ml;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:IOSE80 Cells、BC-019 Cells、H-2196 Cells
MV 4;11 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:KYSE 140 Cells、CV-1.K Cells、RAW2647 Cells
CCC-HEH-2 Cells;背景说明:心肌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SK-GT-4 Cells、Tn5 B1-4 Cells、MESSADX5 Cells
Tokyo Medical and Dental university 8 Cells;背景说明:弥漫大B淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:CEK Cells、HB 611 Cells、FLC-7 Cells
C-8161 Cells;背景说明:皮肤黑色素瘤;腹壁转移;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:PLB-985 Cells、BS-C-1 Cells、SNU-423 Cells
Mel-RM Cells;背景说明:黑色素瘤;神经节转移;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MDAMB436 Cells、DR2R1610 Cells、SCC 4 Cells
ROS1728 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:T_T_ Cells、SW962 Cells、SW 954 Cells
BPH1 Cells;背景说明:良性前列腺增生;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:U118MG Cells、MDA-MB-435-S Cells、Lewis lung carcinoma line 1 Cells
AG23121 Cells(拥有STR基因鉴定图谱)
KM12-SM Cells;背景说明:结肠癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:143B TK- Cells、Potorous tridactylus Kidney 2 Cells、HLFa Cells
Tu 212 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:H-187 Cells、769P Cells、ssMCF7 Cells
T98G Cells;背景说明:详见相关文献介绍;传代方法:按1:3传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:RS4:11 Cells、130T Cells、NSI/1-Ag4-1 Cells
NCI-SNU-16 Cells;背景说明:详见相关文献介绍;传代方法:3-4天换液1次。;生长特性:悬浮聚集;形态特性:上皮细胞;相关产品有:IHH Cells、NTERA-2 Cells、T98 Cells
HCAEC Cells;背景说明:冠状动脉;内皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NCIH522 Cells、H.Ep.-2 Cells、PLC Cells
Hs839T Cells;背景说明:详见相关文献介绍;传代方法:1:2传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:U-87MG ATCC Cells、PANC0203 Cells、SK-Hep1 Cells
Hs839T Cells;背景说明:详见相关文献介绍;传代方法:1:2传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:U-87MG ATCC Cells、PANC0203 Cells、SK-Hep1 Cells
Hs-688A-T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:LNCaP.FGC Cells、ANA1 Cells、HTR-8/SV-neo Cells
HAP1 ACOX1 (-) 1 Cells(拥有STR基因鉴定图谱)
HAP1 SENP1 (-) Cells(拥有STR基因鉴定图谱)
MOLT 3 Cells;背景说明:急性T淋巴细胞白血病;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:BC-009 Cells、OAW-42 Cells、LA-4 [Mouse lung adenoma] Cells
HyCyte HeLa KO-hBPNT1 Cells(拥有STR基因鉴定图谱)
LCF [Lates] Cells(拥有STR基因鉴定图谱)
N-3.10 Cells(拥有STR基因鉴定图谱)
OV90D-7 Cells(拥有STR基因鉴定图谱)
RS-2 Cells(拥有STR基因鉴定图谱)
Ubigene HCT 116 TERT KO Cells(拥有STR基因鉴定图谱)
WAe009-A-J Cells(拥有STR基因鉴定图谱)
HAP1 TMC6 (-) 3 Cells(拥有STR基因鉴定图谱)
H-1869 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:4传代;每周换液2次。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:Tb 1-Lu Cells、ES2 Cells、EoL-1 Cells
LY Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:H7721 Cells、H35 Reuber Cells、Karpas-422 Cells
Colo-206F Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Shadyside Hospital Pittsburgh-77 Cells、V-79 Cells、NCI-H1930 Cells
C-4I Cells;背景说明:宫颈鳞癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:BMF Cells、YH-13 Cells、Pa18C Cells
MES-SA Cells;背景说明:详见相关文献介绍;传代方法:1:6-1:8传代;每周2-3次。;生长特性:贴壁生长;形态特性:成纤维细胞样 ;相关产品有:MCF-12A Cells、SUNE 1 Cells、6-10B Cells
MES-SA Cells;背景说明:详见相关文献介绍;传代方法:1:6-1:8传代;每周2-3次。;生长特性:贴壁生长;形态特性:成纤维细胞样 ;相关产品有:MCF-12A Cells、SUNE 1 Cells、6-10B Cells
SNU739 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:CF-PAC1 Cells、149 PT Cells、SNU-484 Cells
CWR22-R1 Cells;背景说明:22RV1是来自异种移植(在阉割引起前列腺癌衰退又在其父亲的雄性激素信赖型CWR22嫁接后复发的小鼠中连续传代)的人前列腺癌上皮细胞系。此细胞系表达前列腺特异抗原。二羟基睾丸脂酮轻微刺激细胞生长,经westernblot检测溶解产物与抗雄性激素受体抗体起免疫反应。EGF刺激细胞生长,但TGFβ-1不能抑制细胞生长。该细胞在裸鼠中成瘤。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:Bat lung Cells、MCF-7B Cells、LS-411 Cells
FCCH1018 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:VP 229 Cells、210RCY3-Ag1.2.3 Cells、EFM-192C Cells
Jurkat (clone E6-1) Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SW756 Cells、CEM-CCRF (CAMR) Cells、MOLT-16 Cells
MESSA/Dx5 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:8传代;每周2-3次。;生长特性:贴壁生长;形态特性:成纤维细胞样 ;相关产品有:KM12-SM Cells、HLEC-B3 Cells、MEG01 Cells
MESSA/Dx5 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:8传代;每周2-3次。;生长特性:贴壁生长;形态特性:成纤维细胞样 ;相关产品有:KM12-SM Cells、HLEC-B3 Cells、MEG01 Cells
SNU-719 Cells;背景说明:胃癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HcerEpic Cells、P36 Cells、Sp2/0-Ag14 Cells
F442A Cells;背景说明:脂肪前体细胞;雄性;Swiss albino;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:TO 175.T Cells、H23 Cells、SN12-PM6 Cells
HT-1376 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:SUSM1 Cells、NCI-H716 Cells、KBM7 Cells
TDL-4 Cells(拥有STR基因鉴定图谱)
OVCAR-3 Cells;背景说明:该细胞1982年由T.C. Hamilton等建系,源自一位60卵巢腺癌的腹水,是卵巢癌抗药性研究的模型。;传代方法:1:2—1:4传代,每周换液2—3次;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:TE10 Cells、SW1417 Cells、LN-382 Cells
L 1210 Cells;背景说明:该细胞源于用0.2%甲基胆蒽(溶解)涂抹雌性小鼠的皮肤诱发的肿瘤,鼠痘病毒阴性。;传代方法:1:2传代;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:BHP10-3 Cells、NCI-SNU-5 Cells、NCI-H2073 Cells
Jurkat FHCRC Cells;背景说明:该细胞源自一位14岁患有T淋巴细胞白血病男性的外周血;传代方法:保持细胞密度在3—9×105cells/ml之间,1:5—1:10传代,每周换液2—3次;生长特性:悬浮生长;形态特性:圆形,单个或呈片;相关产品有:SCC-1395 Cells、KMY1022 Cells、SNK6 Cells
Panc 3.27 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:J774 Cells、P3JHR-1 Cells、HS852.T Cells
DHL-2 Cells;背景说明:弥漫性大细胞淋巴瘤;胸腔积液转移;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:Normal Rat Kidney Cells、PL11 Cells、Fu97 Cells
EVSA/T Cells;背景说明:乳腺癌;腹水转移;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:OCI/AML-5 Cells、NCI-H196 Cells、A9 Cells
┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
UMR106 Cells;背景说明:注射放射性同位素磷(32P)诱导产生的可移植性大鼠骨肉瘤克隆建立了UMR-106细胞株。 细胞对PTH,前列腺素及破骨甾体有响应。 对PTH的响应度,UMR-106比相关细胞株UMR-108(ATCC CRL-1663)要高。 蛋白激酶C的活化抑制ATP诱导的胞内水平的升高。 起始骨肉瘤和克隆株都是University of Sheffield的T.J. Martin建立的。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:TGW-nu Cells、Panc203 Cells、Mouse INsulinoma 6 Cells
NIH:OVCAR-3 Cells;背景说明:该细胞1982年由T.C. Hamilton等建系,源自一位60卵巢腺癌的腹水,是卵巢癌抗药性研究的模型。;传代方法:1:2—1:4传代,每周换液2—3次;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:Super Tube Cells、HDLM-2 Cells、IMR32 Cells
HBE Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:NCI-446 Cells、RL Cells、mIMCD3 Cells
Ramos 2G6.4C10 Cells;背景说明:详见相关文献介绍;传代方法: 维持细胞浓度在2×105/ml-1×106/ml;根据细胞浓度每2-3天补液1次。;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:NSI/1-Ag4-1 Cells、mIMCD-3 Cells、PANC-28 Cells
Transformed Human Liver Epithelial-2 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:6传代;2-3天换液1次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:OKT3 Cells、H1581 Cells、Hs-940 Cells
H-1238 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:ARH77 Cells、KYSE-450 Cells、SN12C-PM6 Cells
C3H-10T1/2 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:MB49 Cells、MCF7-CTRL Cells、HuH6 Cells
Kasumi-6人急性髓系白血病细胞系
COLO-320HSR Cells;背景说明:该细胞1984年建系,源自一位33岁患有大肠腺癌男性经5-fu治疗后的腹水。;传代方法:1:2传代。3天内可长满。;生长特性:半贴壁生长;形态特性:详见产品说明;相关产品有:Nb-2 Cells、OVCAR8 Cells、MGH-U3 Cells
BayGenomics ES cell line RRJ064 Cells(拥有STR基因鉴定图谱)
BayGenomics ES cell line XK053 Cells(拥有STR基因鉴定图谱)
FD441.8 Cells(拥有STR基因鉴定图谱)
NIH 3T3 Beta6 Cells(拥有STR基因鉴定图谱)
VPM 43 Cells(拥有STR基因鉴定图谱)
MCF-7/TAX Cells(拥有STR基因鉴定图谱)
" "PubMed=10969801
Forozan F., Mahlamaki E.H., Monni O., Chen Y.-D., Veldman R., Jiang Y., Gooden G.C., Ethier S.P., Kallioniemi A.H., Kallioniemi O.-P.
Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.
Cancer Res. 60:4519-4525(2000)
PubMed=12353263; DOI=10.1002/gcc.10107
Popovici C., Basset C., Bertucci F., Orsetti B., Adelaide J., Mozziconacci M.-J., Conte N., Murati A., Ginestier C., Charafe-Jauffret E., Ethier S.P., Lafage-Pochitaloff M., Theillet C., Birnbaum D., Chaffanet M.
Reciprocal translocations in breast tumor cell lines: cloning of a t(3;20) that targets the FHIT gene.
Genes Chromosomes Cancer 35:204-218(2002)
PubMed=12800145; DOI=10.1002/gcc.10218
Adelaide J., Huang H.-E., Murati A., Alsop A.E., Orsetti B., Mozziconacci M.-J., Popovici C., Ginestier C., Letessier A., Basset C., Courtay-Cahen C., Jacquemier J., Theillet C., Birnbaum D., Edwards P.A.W., Chaffanet M.
A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.
Genes Chromosomes Cancer 37:333-345(2003)
PubMed=15677628; DOI=10.1093/carcin/bgi032
Gorringe K.L., Chin S.-F., Pharoah P.D.P., Staines J.M., Oliveira C., Edwards P.A.W., Caldas C.
Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer.
Carcinogenesis 26:923-930(2005)
PubMed=15857504; DOI=10.1186/1475-2867-5-11; PMCID=PMC1090601
Hoffmeyer M.R., Wall K.M., Dharmawardhane S.F.
In vitro analysis of the invasive phenotype of SUM 149, an inflammatory breast cancer cell line.
Cancer Cell Int. 5:11.1-11.10(2005)
PubMed=16397213; DOI=10.1158/0008-5472.CAN-05-2853
Elstrodt F., Hollestelle A., Nagel J.H.A., Gorin M., Wasielewski M., van den Ouweland A.M.W., Merajver S.D., Ethier S.P., Schutte M.
BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.
Cancer Res. 66:41-45(2006)
PubMed=16541312; DOI=10.1007/s10549-006-9186-z
Wasielewski M., Elstrodt F., Klijn J.G.M., Berns E.M.J.J., Schutte M.
Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines.
Breast Cancer Res. Treat. 99:97-101(2006)
PubMed=17157791; DOI=10.1016/j.ccr.2006.10.008; PMCID=PMC2730521
Neve R.M., Chin K., Fridlyand J., Yeh J., Baehner F.L., Fevr T., Clark L., Bayani N., Coppe J.-P., Tong F., Speed T., Spellman P.T., DeVries S., Lapuk A., Wang N.J., Kuo W.-L., Stilwell J.L., Pinkel D., Albertson D.G., Waldman F.M., McCormick F., Dickson R.B., Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.
A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.
Cancer Cell 10:515-527(2006)
PubMed=19582160; DOI=10.1371/journal.pone.0006146; PMCID=PMC2702084
Kao J., Salari K., Bocanegra M., Choi Y.-L., Girard L., Gandhi J., Kwei K.A., Hernandez-Boussard T., Wang P., Gazdar A.F., Minna J.D., Pollack J.R.
Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.
PLoS ONE 4:E6146-E6146(2009)
PubMed=19593635; DOI=10.1007/s10549-009-0460-8
Hollestelle A., Nagel J.H.A., Smid M., Lam S., Elstrodt F., Wasielewski M., Ng S.S., French P.J., Peeters J.K., Rozendaal M.J., Riaz M., Koopman D.G., ten Hagen T.L.M., de Leeuw B.H.C.G.M., Zwarthoff E.C., Teunisse A.F.A.S., van der Spek P.J., Klijn J.G.M., Dinjens W.N.M., Ethier S.P., Clevers H.C., Jochemsen A.G., den Bakker M.A., Foekens J.A., Martens J.W.M., Schutte M.
Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.
Breast Cancer Res. Treat. 121:53-64(2010)
PubMed=22032724; DOI=10.1186/1755-8794-4-75; PMCID=PMC3227591
Ha K.C.H., Lalonde E., Li L.-L., Cavallone L., Natrajan R., Lambros M.B., Mitsopoulos C., Hakas J., Kozarewa I., Fenwick K., Lord C.J., Ashworth A., Vincent-Salomon A., Basik M., Reis-Filho J.S., Majewski J., Foulkes W.D.
Identification of gene fusion transcripts by transcriptome sequencing in BRCA1-mutated breast cancers and cell lines.
BMC Med. Genomics 4:75.1-75.13(2011)
DOI=10.4172/2161-0681.1000119
Robertson F.M., Chu K., Fernandez S.V., Mu Z.-M., Zhang X.-J., Liu H., Boley K.M., Alpaugh R.K., Ye Z.-M., Wright M.C., Luo A.Z., Oraes R., Wu H., Zook M.B., Barsky S.H., Krishnamurthy S., Cristofanilli M.
Genomic profiling of pre-clinical models of inflammatory breast cancer identifies a signature of epithelial plasticity and suppression of TGFbeta signaling.
J. Clin. Exp. Pathol. 2:119.1-119.11(2012)
PubMed=23151021; DOI=10.1186/1471-2164-13-619; PMCID=PMC3546428
Grigoriadis A., Mackay A., Noel E., Wu P.-J., Natrajan R., Frankum J., Reis-Filho J.S., Tutt A.
Molecular characterisation of cell line models for triple-negative breast cancers.
BMC Genomics 13:619.1-619.14(2012)
PubMed=23401782; DOI=10.1155/2013/872743; PMCID=PMC3562669
Barnabas N., Cohen D.
Phenotypic and molecular characterization of MCF10DCIS and SUM breast cancer cell lines.
Int. J. Breast Cancer 2013:872743.1-872743.16(2013)
PubMed=23601657; DOI=10.1186/bcr3415; PMCID=PMC3672661
Riaz M., van Jaarsveld M.T.M., Hollestelle A., Prager-van der Smissen W.J.C., Heine A.A.J., Boersma A.W.M., Liu J.-J., Helmijr J.C.A., Ozturk B., Smid M., Wiemer E.A.C., Foekens J.A., Martens J.W.M.
miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.
Breast Cancer Res. 15:R33.1-R33.17(2013)
PubMed=23784380; DOI=10.1007/s10549-013-2600-4; PMCID=PMC4273486
Fernandez S.V., Robertson F.M., Pei J.-M., Aburto-Chumpitaz L.D., Mu Z.-M., Chu K., Alpaugh R.K., Huang Y., Cao Y., Ye Z.-M., Cai K.Q., Boley K.M., Klein-Szanto A.J.P., Devarajan K., Addya S., Cristofanilli M.
Inflammatory breast cancer (IBC): clues for targeted therapies.
Breast Cancer Res. Treat. 140:23-33(2013)
PubMed=24162158; DOI=10.1007/s10549-013-2743-3; PMCID=PMC3832776
Prat A., Karginova O., Parker J.S., Fan C., He X.-P., Bixby L.M., Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.
Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.
Breast Cancer Res. Treat. 142:237-255(2013)
PubMed=24176112; DOI=10.1186/gb-2013-14-10-r110; PMCID=PMC3937590
Daemen A., Griffith O.L., Heiser L.M., Wang N.J., Enache O.M., Sanborn Z., Pepin F., Durinck S., Korkola J.E., Griffith M., Hur J.S., Huh N., Chung J., Cope L., Fackler M.J., Umbricht C.B., Sukumar S., Seth P., Sume V.P., Jakkula L.R., Lu Y.-L., Mills G.B., Cho R.J., Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.
Modeling precision treatment of breast cancer.
Genome Biol. 14:R110.1-R110.14(2013)
PubMed=25485619; DOI=10.1038/nbt.3080
Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
A comprehensive transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33:306-312(2015)
PubMed=25877200; DOI=10.1038/nature14397
Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
A resource for cell line authentication, annotation and quality control.
Nature 520:307-311(2015)
PubMed=26495931; DOI=10.1515/hmbci-2015-0024
Illera J.C., Caceres S., Pena L., de Andres Gamazo P.J., Monsalve B., Illera M.J., Woodward W.A., Reuben J.M., Silvan G.
Steroid hormone secretion in inflammatory breast cancer cell lines.
Horm. Mol. Biol. Clin. Investig. 24:137-145(2015)
PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Genome Med. 7:118.1-118.7(2015)
PubMed=26735014; DOI=10.1038/nature16508; PMCID=PMC4854653
Shu S.-K., Lin C.Y., He H.-S.H., Witwicki R.M., Tabassum D.P., Roberts J.M., Janiszewska M., Huh S.J., Liang Y., Ryan J., Doherty E., Mohammed H., Guo H., Stover D.G., Ekram M.B., Brown J., D'Santos C., Krop I.E., Dillon D., McKeown M.R., Ott C., Qi J., Ni M., Rao P.K., Duarte M., Wu S.-Y., Chiang C.-M., Anders L., Young R.A., Winer E., Letai A.G., Barry W.T., Carroll J.S., Long H., Brown M.A., Liu X.-L.S., Meyer C.A., Bradner J.E., Polyak K.
Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer.
Nature 529:413-417(2016)
PubMed=28287265; DOI=10.1021/acs.jproteome.6b00470; PMCID=PMC5557415
Yen T.-Y., Bowen S., Yen R., Piryatinska A., Macher B.A., Timpe L.C.
Glycoproteins in claudin-low breast cancer cell lines have a unique expression profile.
J. Proteome Res. 16:1391-1400(2017)"
风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。
文献和实验Forozan F., Mahlamaki E.H., Monni O., Chen Y.-D., Veldman R., Jiang Y., Gooden G.C., Ethier S.P., Kallioniemi A.H., Kallioniemi O.-P.
Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.
Cancer Res. 60:4519-4525(2000)
PubMed=12353263; DOI=10.1002/gcc.10107
Popovici C., Basset C., Bertucci F., Orsetti B., Adelaide J., Mozziconacci M.-J., Conte N., Murati A., Ginestier C., Charafe-Jauffret E., Ethier S.P., Lafage-Pochitaloff M., Theillet C., Birnbaum D., Chaffanet M.
Reciprocal translocations in breast tumor cell lines: cloning of a t(3;20) that targets the FHIT gene.
Genes Chromosomes Cancer 35:204-218(2002)
PubMed=12800145; DOI=10.1002/gcc.10218
Adelaide J., Huang H.-E., Murati A., Alsop A.E., Orsetti B., Mozziconacci M.-J., Popovici C., Ginestier C., Letessier A., Basset C., Courtay-Cahen C., Jacquemier J., Theillet C., Birnbaum D., Edwards P.A.W., Chaffanet M.
A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.
Genes Chromosomes Cancer 37:333-345(2003)
PubMed=15677628; DOI=10.1093/carcin/bgi032
Gorringe K.L., Chin S.-F., Pharoah P.D.P., Staines J.M., Oliveira C., Edwards P.A.W., Caldas C.
Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer.
Carcinogenesis 26:923-930(2005)
PubMed=15857504; DOI=10.1186/1475-2867-5-11; PMCID=PMC1090601
Hoffmeyer M.R., Wall K.M., Dharmawardhane S.F.
In vitro analysis of the invasive phenotype of SUM 149, an inflammatory breast cancer cell line.
Cancer Cell Int. 5:11.1-11.10(2005)
PubMed=16397213; DOI=10.1158/0008-5472.CAN-05-2853
Elstrodt F., Hollestelle A., Nagel J.H.A., Gorin M., Wasielewski M., van den Ouweland A.M.W., Merajver S.D., Ethier S.P., Schutte M.
BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.
Cancer Res. 66:41-45(2006)
PubMed=16541312; DOI=10.1007/s10549-006-9186-z
Wasielewski M., Elstrodt F., Klijn J.G.M., Berns E.M.J.J., Schutte M.
Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines.
Breast Cancer Res. Treat. 99:97-101(2006)
PubMed=17157791; DOI=10.1016/j.ccr.2006.10.008; PMCID=PMC2730521
Neve R.M., Chin K., Fridlyand J., Yeh J., Baehner F.L., Fevr T., Clark L., Bayani N., Coppe J.-P., Tong F., Speed T., Spellman P.T., DeVries S., Lapuk A., Wang N.J., Kuo W.-L., Stilwell J.L., Pinkel D., Albertson D.G., Waldman F.M., McCormick F., Dickson R.B., Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.
A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.
Cancer Cell 10:515-527(2006)
PubMed=19582160; DOI=10.1371/journal.pone.0006146; PMCID=PMC2702084
Kao J., Salari K., Bocanegra M., Choi Y.-L., Girard L., Gandhi J., Kwei K.A., Hernandez-Boussard T., Wang P., Gazdar A.F., Minna J.D., Pollack J.R.
Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.
PLoS ONE 4:E6146-E6146(2009)
PubMed=19593635; DOI=10.1007/s10549-009-0460-8
Hollestelle A., Nagel J.H.A., Smid M., Lam S., Elstrodt F., Wasielewski M., Ng S.S., French P.J., Peeters J.K., Rozendaal M.J., Riaz M., Koopman D.G., ten Hagen T.L.M., de Leeuw B.H.C.G.M., Zwarthoff E.C., Teunisse A.F.A.S., van der Spek P.J., Klijn J.G.M., Dinjens W.N.M., Ethier S.P., Clevers H.C., Jochemsen A.G., den Bakker M.A., Foekens J.A., Martens J.W.M., Schutte M.
Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.
Breast Cancer Res. Treat. 121:53-64(2010)
PubMed=22032724; DOI=10.1186/1755-8794-4-75; PMCID=PMC3227591
Ha K.C.H., Lalonde E., Li L.-L., Cavallone L., Natrajan R., Lambros M.B., Mitsopoulos C., Hakas J., Kozarewa I., Fenwick K., Lord C.J., Ashworth A., Vincent-Salomon A., Basik M., Reis-Filho J.S., Majewski J., Foulkes W.D.
Identification of gene fusion transcripts by transcriptome sequencing in BRCA1-mutated breast cancers and cell lines.
BMC Med. Genomics 4:75.1-75.13(2011)
DOI=10.4172/2161-0681.1000119
Robertson F.M., Chu K., Fernandez S.V., Mu Z.-M., Zhang X.-J., Liu H., Boley K.M., Alpaugh R.K., Ye Z.-M., Wright M.C., Luo A.Z., Oraes R., Wu H., Zook M.B., Barsky S.H., Krishnamurthy S., Cristofanilli M.
Genomic profiling of pre-clinical models of inflammatory breast cancer identifies a signature of epithelial plasticity and suppression of TGFbeta signaling.
J. Clin. Exp. Pathol. 2:119.1-119.11(2012)
PubMed=23151021; DOI=10.1186/1471-2164-13-619; PMCID=PMC3546428
Grigoriadis A., Mackay A., Noel E., Wu P.-J., Natrajan R., Frankum J., Reis-Filho J.S., Tutt A.
Molecular characterisation of cell line models for triple-negative breast cancers.
BMC Genomics 13:619.1-619.14(2012)
PubMed=23401782; DOI=10.1155/2013/872743; PMCID=PMC3562669
Barnabas N., Cohen D.
Phenotypic and molecular characterization of MCF10DCIS and SUM breast cancer cell lines.
Int. J. Breast Cancer 2013:872743.1-872743.16(2013)
PubMed=23601657; DOI=10.1186/bcr3415; PMCID=PMC3672661
Riaz M., van Jaarsveld M.T.M., Hollestelle A., Prager-van der Smissen W.J.C., Heine A.A.J., Boersma A.W.M., Liu J.-J., Helmijr J.C.A., Ozturk B., Smid M., Wiemer E.A.C., Foekens J.A., Martens J.W.M.
miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.
Breast Cancer Res. 15:R33.1-R33.17(2013)
PubMed=23784380; DOI=10.1007/s10549-013-2600-4; PMCID=PMC4273486
Fernandez S.V., Robertson F.M., Pei J.-M., Aburto-Chumpitaz L.D., Mu Z.-M., Chu K., Alpaugh R.K., Huang Y., Cao Y., Ye Z.-M., Cai K.Q., Boley K.M., Klein-Szanto A.J.P., Devarajan K., Addya S., Cristofanilli M.
Inflammatory breast cancer (IBC): clues for targeted therapies.
Breast Cancer Res. Treat. 140:23-33(2013)
PubMed=24162158; DOI=10.1007/s10549-013-2743-3; PMCID=PMC3832776
Prat A., Karginova O., Parker J.S., Fan C., He X.-P., Bixby L.M., Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.
Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.
Breast Cancer Res. Treat. 142:237-255(2013)
PubMed=24176112; DOI=10.1186/gb-2013-14-10-r110; PMCID=PMC3937590
Daemen A., Griffith O.L., Heiser L.M., Wang N.J., Enache O.M., Sanborn Z., Pepin F., Durinck S., Korkola J.E., Griffith M., Hur J.S., Huh N., Chung J., Cope L., Fackler M.J., Umbricht C.B., Sukumar S., Seth P., Sume V.P., Jakkula L.R., Lu Y.-L., Mills G.B., Cho R.J., Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.
Modeling precision treatment of breast cancer.
Genome Biol. 14:R110.1-R110.14(2013)
PubMed=25485619; DOI=10.1038/nbt.3080
Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
A comprehensive transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33:306-312(2015)
PubMed=25877200; DOI=10.1038/nature14397
Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
A resource for cell line authentication, annotation and quality control.
Nature 520:307-311(2015)
PubMed=26495931; DOI=10.1515/hmbci-2015-0024
Illera J.C., Caceres S., Pena L., de Andres Gamazo P.J., Monsalve B., Illera M.J., Woodward W.A., Reuben J.M., Silvan G.
Steroid hormone secretion in inflammatory breast cancer cell lines.
Horm. Mol. Biol. Clin. Investig. 24:137-145(2015)
PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Genome Med. 7:118.1-118.7(2015)
PubMed=26735014; DOI=10.1038/nature16508; PMCID=PMC4854653
Shu S.-K., Lin C.Y., He H.-S.H., Witwicki R.M., Tabassum D.P., Roberts J.M., Janiszewska M., Huh S.J., Liang Y., Ryan J., Doherty E., Mohammed H., Guo H., Stover D.G., Ekram M.B., Brown J., D'Santos C., Krop I.E., Dillon D., McKeown M.R., Ott C., Qi J., Ni M., Rao P.K., Duarte M., Wu S.-Y., Chiang C.-M., Anders L., Young R.A., Winer E., Letai A.G., Barry W.T., Carroll J.S., Long H., Brown M.A., Liu X.-L.S., Meyer C.A., Bradner J.E., Polyak K.
Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer.
Nature 529:413-417(2016)
PubMed=28287265; DOI=10.1021/acs.jproteome.6b00470; PMCID=PMC5557415
Yen T.-Y., Bowen S., Yen R., Piryatinska A., Macher B.A., Timpe L.C.
Glycoproteins in claudin-low breast cancer cell lines have a unique expression profile.
J. Proteome Res. 16:1391-1400(2017)"
PNAS:RAS 抑制剂又添一员,新型蛋白模拟物或为癌症治疗
导读RAS 是肿瘤患者中最常见的致癌基因之一,目前包括 KRAS、NRAS 以及 HRAS 三种亚型。其中,NRAS 突变多见于黑色素瘤和急性髓系白血病,HRAS 突变多见于膀胱癌和头颈癌,而 KRAS 突变比其他两种更常见,最常发生在肺癌、胰腺癌以及结直肠癌。由于在癌症中的 Ras 蛋白经常发生突变,因此 Ras 突变成为了科学家们着力攻克的热点。RAS 曾被医学界称为「不可成药靶点」,科学家们在研究有效的 RAS 抑制剂方面已经摸索尝试了 30 余年,直至近几年才获得了重大进展。当前已经
急性白血病分型是检验技师考试需要复习的内容,医学教育网小编搜索整理如下: 一、急性非淋巴细胞白血病(ANLL) 1、微小分化急性髓系白血病(M0型) 骨髓有核细胞增生程度较轻,原始细胞大于30%,可达90%以上,核圆形,核仁明显。胞质小,嗜碱性,无颗粒,无Auer小体。 2、急性原始粒细胞白血病未分化型(M1) 骨髓增生极度活跃或明显活跃,少数病例可增生减低,骨髓中I型加II型原始粒细胞大于90%(NEC),可见小原粒细胞(胞体小,与淋巴细胞相似
急性非淋巴细胞白血病: 1、微小分化急性髓系白血病(M0型):骨髓有核细胞增生程度较轻,原始细胞大于30%,可达90%以上,核圆形,核仁明显。胞质小,嗜碱性,无颗粒,无Auer小体。 2、急性原始粒细胞白血病未分化型(M1):骨髓增生极度活跃或明显活跃,少数病例可增生减低,骨髓中I型加II型原始粒细胞大于90%(NEC),可见小原粒细胞(胞体小,与淋巴细胞相似,胞似圆形,核染色质呈细颗粒状,较正常原粒细胞密集,核仁1-2个,有伪足)。 3、急性原始粒细胞白血病部分










