5637人膀胱癌传代细胞活性强|送STR图谱
文献支持

5637人膀胱癌传代细胞活性强|送STR图谱

收藏
  • ¥850 - 2150
  • 冠导生物
  • 5637人膀胱癌传代细胞活性强|送STR图谱
  • 美国、德国、欧洲等地
  • 2025年07月13日
    avatar
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 文献和实验
    • 技术资料
    • 品系

      详见细胞说明资料

    • 细胞类型

      详见细胞说明资料

    • 肿瘤类型

      详见细胞说明资料

    • 供应商

      上海冠导生物工程有限公司

    • 库存

      ≥100瓶

    • 生长状态

      详见细胞说明资料

    • 年限

      详见细胞说明资料

    • 运输方式

      常温运输【复苏细胞】或干冰运输【冻存细胞】

    • 器官来源

      详见细胞说明资料

    • 是否是肿瘤细胞

      详见细胞说明资料

    • 细胞形态

      详见细胞说明资料

    • 免疫类型

      详见细胞说明资料

    • 物种来源

      详见细胞说明资料

    • 相关疾病

      详见细胞说明资料

    • 组织来源

      详见细胞说明资料

    • 英文名

      5637人膀胱癌传代细胞活性强|送STR图谱

    • 规格

      1*10(6)Cellls/瓶

    "5637人膀胱癌传代细胞活性强|送STR图谱
    传代方法:1:2-1:4(首次传代建议1:2)
    生长特性:贴壁生长
    换液频率:每周2-3次
    背景资料:该细胞源于一位68岁的患有膀胱癌的白人男性患者。据报道,该细胞能产生SCF、IL-1、IL-3、IL-6、G-CSF、GM-CSF等。
    KYSE140 Cells;背景说明:食管鳞癌细胞;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:H1573 Cells、BJ1 Cells、H1299 Cells
    HCC-1569 Cells;背景说明:详见相关文献介绍;传代方法:1:4—1:6传代,每周换液2—3次;生长特性:混合生长;形态特性:上皮样;相关产品有:WSUDLCL2 Cells、AN3 CA Cells、Hs606T Cells
    NIH 3T6 Cells;背景说明:胚胎;成纤维;自发永生;雄性;Swiss albino;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:CP70 Cells、H1373 Cells、SKNBE(2c) Cells
    体内细胞培养及其操作步骤:【瘤细胞悬接种】1)无菌选取生长良HAO(有光泽,淡红色)瘤组织或对数生长期培养瘤细胞;2)在PBS中将瘤组织剪碎后用匀浆器研磨,经80~100目筛网过滤成细胞悬;3)培养细胞应用PBS洗两遍;4)计数并调整细胞浓度至107~108/ml;5)常规消毒后,于接种部位(通常为背部或腋窝腹股沟皮下)用医用注射器皮下潜行一段后注入细胞悬(0.1ml/部位,>106细胞)。初次接种成功率低,细胞数尽可能多一些;6)次日注意观察动物一般情况。初次接种一般有一段较长的潜伏期,以后随着传代潜伏期逐渐缩短,Zui后固定为一个相对稳定的时间。【腹水瘤的建立与腹水瘤的接种】将实体瘤细胞直接种于小鼠腹腔、腹壁或其他部位,引起腹水,腹水中含有瘤细胞,将这种腹水反复传代,即可成为腹水瘤。初次传代时,腹水常呈血性(含大量红细胞),反复传代后腹水逐渐变成乳白色。腹水瘤的接种过程如下。1)将冻存或培养的腹水瘤细胞离心和洗涤,进行细胞计数;2)消毒动物,左下腹穿刺接种106腹水瘤细胞;3)接种腹水瘤细胞后约7~12d,待小鼠腹部明显膨大。用碘酒棉球消毒小鼠腹部,用9号针头抽取腹水,也可行腹部解剖后,用滴管吸取。每只小鼠可抽3~5ml;4)抽取的腹水经3000rpm离心15min,收集上清,分装冻存备用。
    5637人膀胱癌传代细胞活性强|送STR图谱
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    产品包装形式:复苏细胞:T25培养瓶(一瓶)或冻存细胞:1ml冻存管(两支)
    来源说明:细胞主要来源ATCC、DSMZ等细胞库
    物种来源:Human\Mouse\Rat\Others
    IOSE-80 Cells;背景说明:卵巢;上皮细胞;SV40转化;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:mouse Inner Medullary Collecting Duct-3 Cells、LO2 Cells、H1781 Cells
    IHH Cells;背景说明:肝;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:HS5 Cells、Jurkat-E6 Cells、LPC-H12 Cells
    OEC33 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:ZR-75-1 Cells、HPF Cells、Wien133 Cells
    alphaTC1 Clone 6 Cells;背景说明:胰岛素瘤;a细胞;C57BL/6xDBA/2;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:CCRF.CEM Cells、HBE135-E6E7 Cells、ZR-75-1 Cells
    细胞常规培养传代流程(请严格遵照无菌操作):1)吸出原培养瓶中的培养基,PBS缓冲润洗细胞两次,加2-3ml 0.25%胰酶进行消化细胞(注意把握消化时间,通常控制在1-2min);2)镜下观察消化情况,在细胞边缘缩小,贴壁松动时(不建议消化到细胞漂浮)去掉胰酶,加6-8ml完全培养基,轻轻吹打细胞层,尽量把细胞层吹落,吹散;3)取部分细胞悬转移到新的培养皿/瓶中,添加适当的完全培养基,把细胞悬打匀,于培养箱中培养;4)注意培养基PH值变化情况,定期换(每周2-3次),待细胞密度达到80%以后重复1项操作或者冻存;别注意:(如使用公共实验室或者初次接触细胞培养,建议添加双抗培养)1)收到细胞后请尽快更换为含15%血清的新鲜培养基,如因殊情况需要继续使用原瓶,请在原瓶培养基中额外添加10%的血清,(原瓶培养基的继续使用时间Zui长不宜超过72小时);2)贴壁细胞收到当天切忌立刻消化,请将细胞换后放置培养箱孵育到第二天再做消化传代,请YOU先选择直径6cm的培养皿进行传代培养;3)如签收时出现培养瓶壁破裂,漏等情况请及时做HAO照片记录并联系实验室。
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    5637人膀胱癌传代细胞活性强|送STR图谱
    形态特性:上皮细胞样
    上皮细胞(epithelial cell)是构成上皮组织的基本单位,广泛分布在人体的各个表面和体腔内,外胚层来源:皮肤、腺垂体、内耳膜、角膜、晶状体、鼻腔、口腔、肛门等处的上皮细胞由外胚层发育而来。中胚层来源:间皮、内皮等上皮细胞由中胚层发育而来。内胚层来源:中耳、呼吸道、肺、胸腺、消化道、消化腺、膀胱、阴道、甲状腺、甲状旁腺等处的上皮细胞由内胚层发育而来。许多癌症起源于上皮细胞,如肝细胞癌、结直肠癌、乳腺癌、肺癌、胃癌、前列腺癌、卵巢癌和子宫内膜癌。这些癌症中的上皮细胞通常表现出细胞标志物的变化,如E-cadherin的缺失和N-cadherin、vimentin等间充质细胞标志物的表达上调。
    SF763 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:H510A Cells、MONO-MAC 6 Cells、PBMC Cells
    mRMEC Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:A375mel Cells、SCL-II Cells、SK-GT-2 Cells
    BHP-10 Cells;背景说明:甲状腺乳头状癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:SK-Mel 2 Cells、FCCH1018 Cells、OE33 Cells
    293 HEK Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:FAO-1 Cells、Huh 7.5 Cells、Sp 2/0-Ag 14 Cells
    WiDr/S Cells;背景说明:结肠癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:WERI-Rb1 Cells、MDCK (NBL-2) Cells、Hs-343-T Cells
    CHO-S Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:OPM-2 Cells、NTera2 cl.D1 Cells、KMB17 Cells
    Det 562 Cells;背景说明:器官:咽头 疾病:癌 取材转移灶:胸水;传代方法:1:2-1:4传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:Loucy Cells、G402 Cells、NCI-H1882 Cells
    WPE-int Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:HCC-2108 Cells、DMS-53 Cells、BIC Cells
    H-1930 Cells;背景说明:详见相关文献介绍;传代方法:3-4天换液1次。;生长特性:悬浮生长;形态特性:详见产品说明书;相关产品有:PaCa2 Cells、HS-294-T Cells、253J-BV Cells
    Abcam HCT 116 ICOSLG KO Cells(拥有STR基因鉴定图谱)
    AG07143 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line CSI824 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line SYA183 Cells(拥有STR基因鉴定图谱)
    biPS-90-25 Cells(拥有STR基因鉴定图谱)
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    CJ179-hTERT Cells(拥有STR基因鉴定图谱)
    DA03311 Cells(拥有STR基因鉴定图谱)
    FHML2-6 Cells(拥有STR基因鉴定图谱)
    GM08957 Cells(拥有STR基因鉴定图谱)
    Stanford University-Diffuse Histiocytic Lymphoma-6 Cells;背景说明:详见相关文献介绍;传代方法:1:3—1:6传代,3—4天换液1次;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:Tsup-1 Cells、P3X63Ag8 Cells、HTori-3.1 Cells
    MNNG-HOS Cells;背景说明:骨肉瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:OCI-LY-3 Cells、GB1 Cells、TMD-8 Cells
    HRIF Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:CV-1 Cells、Madin-Darby Bovine Kidney Cells、MCF-10A Cells
    Panc-1-P Cells;背景说明:这株人胰腺癌细胞株源自于胰腺癌导管细胞,其倍增时间为52小时。染色体研究表明,该细胞染色体众数为63,包括3个独特标记的染色体和1个小环状染色体。该细胞的生长可被1unit/ml的左旋天冬酰胺酶抑制;能在软琼脂上生长;能在裸鼠上成瘤。;传代方法:1:2-1:4传代;每周2-3次。;生长特性:贴壁生长;形态特性:上皮样;多角形;相关产品有:NCI-H460 Cells、GM03570E Cells、PLA801-95D Cells
    HCC0202 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:B-CPAP Cells、HT-29/CX-1 Cells、OV-1063 Cells
    SNU-407 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:HCC-44 Cells、SK UT 1 Cells、TE-1 Cells
    OVCA-432 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:MRC-5 Cells、NCI-H209 Cells、SCC90 Cells
    Japanese Tissue Culture-28 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代。3天内可长满。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:HuH-28 Cells、Pa18C Cells、Molm14 Cells
    MA104 Cells;背景说明:胚肾;自发永生;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:ONS-76 Cells、MOLM16 Cells、HSC1 Cells
    JVM2 Cells;背景说明:该细胞是 J.V.Melo从一位63岁患有套细胞淋巴瘤白人女性外周血中分离建立的,经EBV介导获得永生化,该细胞表达p16和细胞周期蛋白D2,低水平表达细胞周期蛋白D1。;传代方法:1:3传代,2-3天传一代;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:YES-2 Cells、MES-SA/Dx-5 Cells、SKHEP1 Cells
    HECCL-1 Cells;背景说明:子宫内膜癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:K422 Cells、OK Cells、H-1694 Cells
    MLTC-1 Cells;背景说明:睾丸间质瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:MV3 Cells、HemECs Cells、SK N SH Cells
    mouse Inner Medullary Collecting Duct-3 Cells;背景说明:肾;内髓集合管;上皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:MC/CAR Cells、HEM-L Cells、HuH6 Cells
    Ba/F3GR Cells(拥有STR基因鉴定图谱)
    Tn5B1-4 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:PC-2 [Human pancreatic carcinoma] Cells、B16/F10 Cells、RCC10RGB Cells
    5637人膀胱癌传代细胞活性强|送STR图谱
    MRMT-1 Cells;背景说明:乳腺癌;SD;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:HOEC Cells、SNU-638 Cells、CORL88 Cells
    SUDHL-5 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:MX-1 Cells、NCI-H929 Cells、SKml2 Cells
    Hs-695-T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:H226 Cells、JB6 Cl 30 Cells、OVCA-420 Cells
    CACO2 Cells;背景说明:细胞株分离自一个原发性结肠癌。当细胞长满时,表现出典型的肠细胞分化的特征。Caco-2细胞表达维生素A酸结合蛋白I和视黄醇结合蛋白II,角蛋白阳性。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:PCI:SG231 Cells、HFB Cells、GBCSD Cells
    GP2d Cells;背景说明:详见相关文献介绍;传代方法:1:2—1:3传代,每周换液2—3次;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:CCD19Lu Cells、GM2131 Cells、GM637 Cells
    AM-38 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:NRK52E Cells、EBNA-293 Cells、HN-6 Cells
    HOC1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:LIXC-002 Cells、H1092 Cells、OVCA420 Cells
    GM25990 Cells(拥有STR基因鉴定图谱)
    HAP1 NTHL1 (-) 4 Cells(拥有STR基因鉴定图谱)
    JKT1 Cells;背景说明:精原瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Hi-5 Cells、PC3M-1E8 Cells、CAL 120 Cells
    SUM190 Cells;背景说明:乳腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:SW 780 Cells、JURKAT E-61 Cells、SCC15 Cells
    NIH/3T3 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:MDAPC2B Cells、MDA-MB 468 Cells、MX-1 Cells
    3T3L1 Cells;背景说明:3T3-L1是从3T3细胞(Swissalbino)中经克隆分离得到的连续传代的亚系。该细胞从快速分裂到汇合和接触性抑制状态经历了前脂肪细胞到脂肪样细胞的转变。该细胞鼠痘病毒阴性;可产生甘油三酯,高浓度血清可增强细胞内脂肪堆积。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:CATHa Cells、RKOAS451 Cells、HCC-2185 Cells
    SK Mel 2 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:6传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:多边形的;相关产品有:VK2 Cells、H.Ep. No. 2 Cells、GH3 Cells
    SK-MEL3 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:5传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:D283MED Cells、MDA-MB231 Cells、PaTu 8988s Cells
    NCI-841 Cells;背景说明:详见相关文献介绍;传代方法:1:3—1:5传代,;生长特性:混合型生长;形态特性:详见产品说明书;相关产品有:AML-2 Cells、Rat1 Cells、LS180 Cells
    HCT-8 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:NCI-H-295 Cells、CNE1 Cells、SK.MEL.28 Cells
    Hs 483.T Cells(拥有STR基因鉴定图谱)
    KMP-1 Cells(拥有STR基因鉴定图谱)
    MLEC-Hs6st1-/- Cells(拥有STR基因鉴定图谱)
    NT-92 Cells(拥有STR基因鉴定图谱)
    REGUi006-A Cells(拥有STR基因鉴定图谱)
    Ubigene HEK293T ACTN1 KO Cells(拥有STR基因鉴定图谱)
    WoodTad-rpe Cells(拥有STR基因鉴定图谱)
    HEK293T GALE KO clone 4 Cells(拥有STR基因鉴定图谱)
    Capan-2 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:多边形;相关产品有:H-1341 Cells、NOR 10 Cells、NG10815 Cells
    TOV21G Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:4传代,3-4天换液1次。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:Ontario Cancer Institute-Acute Myeloid Leukemia-4 Cells、PANC-1 Cells、SNU398 Cells
    HEP-3B2 Cells;背景说明:肝癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:CNE-2Z Cells、OCLY8 Cells、KMM-1 Cells
    PL9 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:Centre Antoine Lacassagne-78 Cells、CAKI1 Cells、MDA-MB-231-GFP Cells
    BJA-B-1 Cells;背景说明:Burkitt's淋巴瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:GES1 Cells、OVCAR-10 Cells、SLMT-1 Cells
    BJA-B-1 Cells;背景说明:Burkitt's淋巴瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:GES1 Cells、OVCAR-10 Cells、SLMT-1 Cells
    IM9 Cells;背景说明:B淋巴细胞;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:Chang Cells Cells、W256 Cells、FTC133 Cells
    EBNA293 Cells;背景说明:详见相关文献介绍;传代方法:1:4-1:10传代;每周2次。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:HSC-I Cells、OV-1063 Cells、MiaPaCa2 Cells
    Walker-256 Cells;背景说明:乳腺癌;雌性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:AR4-IP Cells、HCC0366 Cells、HEL-92_1_7 Cells
    SJCRH30 Cells;背景说明:肺泡横纹肌肉瘤;骨髓转移;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:SBC-3 Cells、RCC-10RGB Cells、NCI660 Cells
    BIC-1 Cells;背景说明:食管腺癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:BALB/c 3T3 clone A31 Cells、SW-756 Cells、ONS76 Cells
    BIU87 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:H2591 Cells、NCI-H358 Cells、HSAEC1-KT Cells
    MDA-MB-435-S Cells;背景说明:MDA-MB-435S是一种纺锤形的细胞,1976年由其亲本(435)中筛选得到。435是从31岁的转移性乳腺导管腺癌女性患者胸水中分离得到。当用荧光染料对微管蛋白进行染色时亲本细胞显现散布特征(II型)。最近通过cDNA阵列研究表明,亲本(MDA-MB-435)可归入黑素瘤起源。;传代方法:消化3-5分钟,1:2,3天内可长满;生长特性:贴壁生长;形态特性:纺锤形;相关产品有:Kit225-K6 Cells、NTERA2D1 Cells、Hs 737.T Cells
    VMRC-LCD Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:M059K Cells、NBL-S Cells、NCI-H1522 Cells
    H-2591 Cells;背景说明:上皮样间皮瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:HTori-3 Cells、A549 Cells、CCRF CEM Cells
    STBCi102-A Cells(拥有STR基因鉴定图谱)
    SCC7 Cells;背景说明:鳞状细胞癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Douglas Foster-1 Cells、ASH3 Cells、Balb/3T3-4-Cl31 Cells
    HOS Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:成纤维细胞和上皮细胞的混合样;相关产品有:S16 Cells、COLO680N Cells、MIA-PaCa-2 Cells
    ACCM Cells;背景说明:涎腺腺样囊性癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:Rat Skin 1 Cells、143B Cells、SW626 Cells
    IPLB-SF-21-AE Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:SKMEL24 Cells、SCC154 Cells、JC Cells
    Caov-3 Cells;背景说明:该细胞1976年建系,源自一位54岁白人女性的卵巢腺癌组织。;传代方法:1:3传代,2—3天换液一次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:BLO 11 Cells、LUDLU 1 Cells、SUM-52 Cells
    Calf Pulmonary Artery Endothelial Cells;背景说明:肺血管;内皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:GTL16 Cells、T47-D Cells、MDA-468 Cells
    32D CL3 Cells;背景说明:骨髓淋巴瘤;C3H/HeJ;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明书;相关产品有:NCI-H87 Cells、Colo-201 Cells、DAKIKI Clone 1 Cells
    Jurkat 77 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:QBI-293A Cells、M.D. Anderson-Prostate Cancer-2b Cells、Kupffer Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    LSECs Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:NCI-H295 Cells、QGY7701 Cells、DHL10 Cells
    BT-325 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:SNU601 Cells、SNU-354 Cells、Hepatoma 22 Cells
    RGC-6 Cells;背景说明:胶质细胞株C6是由Benda等用N-nitrosomethylurea诱导的大鼠胶质瘤克隆,并经过一系列的体外培养和动物传代交替后建成的。 当细胞从低密度生长到满瓶时,S-100产量增加10倍。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:RPMI7666 Cells、NCIH838 Cells、SUDHL-6 Cells
    HCA7 Cells;背景说明:结肠腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:CAKI1 Cells、LS123 Cells、L-M[TK-] Cells
    C518 Cells;背景说明:膝关节退变软骨 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明书;相关产品有:H-1694 Cells、OK Cells、Ishikawa Cells
    G-292 clone A141B1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明书部分;形态特性:详见产品说明书;相关产品有:H-838 Cells、REC-1 Cells、MCF 7 Cells
    BayGenomics ES cell line LRY042 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line XC243 Cells(拥有STR基因鉴定图谱)
    CPTC-BTLA-3 Cells(拥有STR基因鉴定图谱)
    MANSIX5A5-10B12 Cells(拥有STR基因鉴定图谱)
    5637人膀胱癌传代细胞活性强|送STR图谱
    SAL06 Cells(拥有STR基因鉴定图谱)
    HOS/CMV-Luc#2(c-1) Cells(拥有STR基因鉴定图谱)
    "    "PubMed=6244232
    Williams R.D.
    Human urologic cancer cell lines.
    Invest. Urol. 17:359-363(1980)

    PubMed=7459858
    Rousset M., Zweibaum A., Fogh J.
    Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
    Cancer Res. 41:1165-1170(1981)

    PubMed=6582512; DOI=10.1073/pnas.81.2.568; PMCID=PMC344720
    Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
    Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
    Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984)

    PubMed=3518877; DOI=10.3109/07357908609038260
    Fogh J.
    Human tumor lines for cancer research.
    Cancer Invest. 4:157-184(1986)

    PubMed=7787250
    Cooper M.J., Haluschak J.J., Johnson D., Schwartz S., Morrison L.J., Lippa M., Hatzivassiliou G., Tan J.
    p53 mutations in bladder carcinoma cell lines.
    Oncol. Res. 6:569-579(1994)

    PubMed=8873383; DOI=10.1007/BF00295899
    Stadler W.M., Olopade O.I.
    The 9p21 region in bladder cancer cell lines: large homozygous deletion inactivate the CDKN2, CDKN2B and MTAP genes.
    Urol. Res. 24:239-244(1996)

    PubMed=9850064
    Markl I.D.C., Jones P.A.
    Presence and location of TP53 mutation determines pattern of CDKN2A/ARF pathway inactivation in bladder cancer.
    Cancer Res. 58:5348-5353(1998)

    PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459
    Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
    Short tandem repeat profiling provides an international reference standard for human cell lines.
    Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)

    PubMed=11921286; DOI=10.1002/gcc.10050
    Williams S.V., Sibley K.D., Davies A.M., Nishiyama H., Hornigold N., Coulter J., Kennedy W.J., Skilleter A., Habuchi T., Knowles M.A.
    Molecular genetic analysis of chromosome 9 candidate tumor-suppressor loci in bladder cancer cell lines.
    Genes Chromosomes Cancer 34:86-96(2002)

    PubMed=12127398; DOI=10.1016/S0165-4608(01)00648-3
    Strefford J.C., Lillington D.M., Steggall M., Lane T.M., Nouri A.M.E., Young B.D., Oliver R.T.D.
    Novel chromosome findings in bladder cancer cell lines detected with multiplex fluorescence in situ hybridization.
    Cancer Genet. Cytogenet. 135:139-146(2002)

    PubMed=15846775; DOI=10.1002/gcc.20166
    Williams S.V., Adams J., Coulter J., Summersgill B.M., Shipley J.M., Knowles M.A.
    Assessment by M-FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro.
    Genes Chromosomes Cancer 43:315-328(2005)

    PubMed=16885334; DOI=10.1158/0008-5472.CAN-06-1182
    Lopez-Knowles E., Hernandez S., Malats N., Kogevinas M., Lloreta J., Carrato A., Tardon A., Serra C., Real F.X.
    PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors.
    Cancer Res. 66:7401-7404(2006)

    PubMed=17254797; DOI=10.1016/j.biologicals.2006.10.001
    Azari S., Ahmadi N., Jeddi-Tehrani M., Shokri F.
    Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran.
    Biologicals 35:195-202(2007)

    PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113
    Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
    Signatures of mutation and selection in the cancer genome.
    Nature 463:893-898(2010)

    PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
    Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
    A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
    Cancer Res. 70:2158-2164(2010)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=23401075; DOI=10.1002/path.4176
    Guo Y.-N., Chekaluk Y., Zhang J.-M., Du J.-Y., Gray N.S., Wu C.-L., Kwiatkowski D.J.
    TSC1 involvement in bladder cancer: diverse effects and therapeutic implications.
    J. Pathol. 230:17-27(2013)

    PubMed=24367658; DOI=10.1371/journal.pone.0084411; PMCID=PMC3867501
    Ross R.L., Burns J.E., Taylor C.F., Mellor P., Anderson D.H., Knowles M.A.
    Identification of mutations in distinct regions of p85 alpha in urothelial cancer.
    PLoS ONE 8:E84411-E84411(2013)

    PubMed=24035680; DOI=10.1016/j.eururo.2013.08.057
    Hurst C.D., Platt F.M., Knowles M.A.
    Comprehensive mutation analysis of the TERT promoter in bladder cancer and detection of mutations in voided urine.
    Eur. Urol. 65:367-369(2014)

    PubMed=24459064; DOI=10.1007/s13277-013-1604-3
    Pinto-Leite R., Carreira I.M., Melo J.B., Ferreira S.I., Ribeiro I.P., Ferreira J., Filipe M., Bernardo C., Arantes-Rodrigues R., Oliveira P., Santos L.
    Genomic characterization of three urinary bladder cancer cell lines: understanding genomic types of urinary bladder cancer.
    Tumor Biol. 35:4599-4617(2014)

    PubMed=25997541; DOI=10.1186/s12864-015-1450-3; PMCID=PMC4470036
    Earl J., Rico D., Carrillo-de-Santa-Pau E., Rodriguez-Santiago B., Mendez-Pertuz M., Auer H., Gomez G., Grossman H.B., Pisano D.G., Schulz W.A., Perez-Jurado L.A., Carrato A., Theodorescu D., Chanock S.J., Valencia A., Real F.X.
    The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies.
    BMC Genomics 16:403.1-403.16(2015)

    PubMed=26055179; DOI=10.1016/j.tranon.2015.04.002; PMCID=PMC4487788
    Vallo S., Michaelis M., Rothweiler F., Bartsch G., Gust K.M., Limbart D.M., Rodel F., Wezel F., Haferkamp A., Cinatl J. Jr.
    Drug-resistant urothelial cancer cell lines display diverse sensitivity profiles to potential second-line therapeutics.
    Transl. Oncol. 8:210-216(2015)

    PubMed=26972028; DOI=10.1016/j.jprot.2016.03.008
    Masuishi Y., Kimura Y., Arakawa N., Hirano H.
    Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment.
    J. Proteomics 139:77-83(2016)

    PubMed=27141528; DOI=10.1016/j.dib.2016.04.001; PMCID=PMC4838930
    Masuishi Y., Kimura Y., Arakawa N., Hirano H.
    Data for identification of GPI-anchored peptides and omega-sites in cancer cell lines.
    Data Brief 7:1302-1305(2016)

    PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
    Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
    A landscape of pharmacogenomic interactions in cancer.
    Cell 166:740-754(2016)

    PubMed=27270441; DOI=10.1038/onc.2016.172; PMCID=PMC5140783
    Nickerson M.L., Witte N., McGee Im K., Turan S., Owens C.R., Misner K., Tsang S.X., Cai Z.-M., Wu S., Dean M., Costello J.C., Theodorescu D.
    Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.
    Oncogene 36:35-46(2017)

    PubMed=29732388; DOI=10.3233/BLC-180167; PMCID=PMC5929350
    Zuiverloon T.C.M., de Jong F.C., Costello J.C., Theodorescu D.
    Systematic review: characteristics and preclinical uses of bladder cancer cell lines.
    Bladder Cancer 4:169-183(2018)"
     

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献
    "PubMed=6244232
    Williams R.D.
    Human urologic cancer cell lines.
    Invest. Urol. 17:359-363(1980)

    PubMed=7459858
    Rousset M., Zweibaum A., Fogh J.
    Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
    Cancer Res. 41:1165-1170(1981)

    PubMed=6582512; DOI=10.1073/pnas.81.2.568; PMCID=PMC344720
    Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
    Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
    Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984)

    PubMed=3518877; DOI=10.3109/07357908609038260
    Fogh J.
    Human tumor lines for cancer research.
    Cancer Invest. 4:157-184(1986)

    PubMed=7787250
    Cooper M.J., Haluschak J.J., Johnson D., Schwartz S., Morrison L.J., Lippa M., Hatzivassiliou G., Tan J.
    p53 mutations in bladder carcinoma cell lines.
    Oncol. Res. 6:569-579(1994)

    PubMed=8873383; DOI=10.1007/BF00295899
    Stadler W.M., Olopade O.I.
    The 9p21 region in bladder cancer cell lines: large homozygous deletion inactivate the CDKN2, CDKN2B and MTAP genes.
    Urol. Res. 24:239-244(1996)

    PubMed=9850064
    Markl I.D.C., Jones P.A.
    Presence and location of TP53 mutation determines pattern of CDKN2A/ARF pathway inactivation in bladder cancer.
    Cancer Res. 58:5348-5353(1998)

    PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459
    Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
    Short tandem repeat profiling provides an international reference standard for human cell lines.
    Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)

    PubMed=11921286; DOI=10.1002/gcc.10050
    Williams S.V., Sibley K.D., Davies A.M., Nishiyama H., Hornigold N., Coulter J., Kennedy W.J., Skilleter A., Habuchi T., Knowles M.A.
    Molecular genetic analysis of chromosome 9 candidate tumor-suppressor loci in bladder cancer cell lines.
    Genes Chromosomes Cancer 34:86-96(2002)

    PubMed=12127398; DOI=10.1016/S0165-4608(01)00648-3
    Strefford J.C., Lillington D.M., Steggall M., Lane T.M., Nouri A.M.E., Young B.D., Oliver R.T.D.
    Novel chromosome findings in bladder cancer cell lines detected with multiplex fluorescence in situ hybridization.
    Cancer Genet. Cytogenet. 135:139-146(2002)

    PubMed=15846775; DOI=10.1002/gcc.20166
    Williams S.V., Adams J., Coulter J., Summersgill B.M., Shipley J.M., Knowles M.A.
    Assessment by M-FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro.
    Genes Chromosomes Cancer 43:315-328(2005)

    PubMed=16885334; DOI=10.1158/0008-5472.CAN-06-1182
    Lopez-Knowles E., Hernandez S., Malats N., Kogevinas M., Lloreta J., Carrato A., Tardon A., Serra C., Real F.X.
    PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors.
    Cancer Res. 66:7401-7404(2006)

    PubMed=17254797; DOI=10.1016/j.biologicals.2006.10.001
    Azari S., Ahmadi N., Jeddi-Tehrani M., Shokri F.
    Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran.
    Biologicals 35:195-202(2007)

    PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113
    Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
    Signatures of mutation and selection in the cancer genome.
    Nature 463:893-898(2010)

    PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
    Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
    A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
    Cancer Res. 70:2158-2164(2010)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=23401075; DOI=10.1002/path.4176
    Guo Y.-N., Chekaluk Y., Zhang J.-M., Du J.-Y., Gray N.S., Wu C.-L., Kwiatkowski D.J.
    TSC1 involvement in bladder cancer: diverse effects and therapeutic implications.
    J. Pathol. 230:17-27(2013)

    PubMed=24367658; DOI=10.1371/journal.pone.0084411; PMCID=PMC3867501
    Ross R.L., Burns J.E., Taylor C.F., Mellor P., Anderson D.H., Knowles M.A.
    Identification of mutations in distinct regions of p85 alpha in urothelial cancer.
    PLoS ONE 8:E84411-E84411(2013)

    PubMed=24035680; DOI=10.1016/j.eururo.2013.08.057
    Hurst C.D., Platt F.M., Knowles M.A.
    Comprehensive mutation analysis of the TERT promoter in bladder cancer and detection of mutations in voided urine.
    Eur. Urol. 65:367-369(2014)

    PubMed=24459064; DOI=10.1007/s13277-013-1604-3
    Pinto-Leite R., Carreira I.M., Melo J.B., Ferreira S.I., Ribeiro I.P., Ferreira J., Filipe M., Bernardo C., Arantes-Rodrigues R., Oliveira P., Santos L.
    Genomic characterization of three urinary bladder cancer cell lines: understanding genomic types of urinary bladder cancer.
    Tumor Biol. 35:4599-4617(2014)

    PubMed=25997541; DOI=10.1186/s12864-015-1450-3; PMCID=PMC4470036
    Earl J., Rico D., Carrillo-de-Santa-Pau E., Rodriguez-Santiago B., Mendez-Pertuz M., Auer H., Gomez G., Grossman H.B., Pisano D.G., Schulz W.A., Perez-Jurado L.A., Carrato A., Theodorescu D., Chanock S.J., Valencia A., Real F.X.
    The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies.
    BMC Genomics 16:403.1-403.16(2015)

    PubMed=26055179; DOI=10.1016/j.tranon.2015.04.002; PMCID=PMC4487788
    Vallo S., Michaelis M., Rothweiler F., Bartsch G., Gust K.M., Limbart D.M., Rodel F., Wezel F., Haferkamp A., Cinatl J. Jr.
    Drug-resistant urothelial cancer cell lines display diverse sensitivity profiles to potential second-line therapeutics.
    Transl. Oncol. 8:210-216(2015)

    PubMed=26972028; DOI=10.1016/j.jprot.2016.03.008
    Masuishi Y., Kimura Y., Arakawa N., Hirano H.
    Identification of glycosylphosphatidylinositol-anchored proteins and omega-sites using TiO2-based affinity purification followed by hydrogen fluoride treatment.
    J. Proteomics 139:77-83(2016)

    PubMed=27141528; DOI=10.1016/j.dib.2016.04.001; PMCID=PMC4838930
    Masuishi Y., Kimura Y., Arakawa N., Hirano H.
    Data for identification of GPI-anchored peptides and omega-sites in cancer cell lines.
    Data Brief 7:1302-1305(2016)

    PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
    Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
    A landscape of pharmacogenomic interactions in cancer.
    Cell 166:740-754(2016)

    PubMed=27270441; DOI=10.1038/onc.2016.172; PMCID=PMC5140783
    Nickerson M.L., Witte N., McGee Im K., Turan S., Owens C.R., Misner K., Tsang S.X., Cai Z.-M., Wu S., Dean M., Costello J.C., Theodorescu D.
    Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.
    Oncogene 36:35-46(2017)

    PubMed=29732388; DOI=10.3233/BLC-180167; PMCID=PMC5929350
    Zuiverloon T.C.M., de Jong F.C., Costello J.C., Theodorescu D.
    Systematic review: characteristics and preclinical uses of bladder cancer cell lines.
    Bladder Cancer 4:169-183(2018)"
    图标技术资料

    需要更多技术资料 索取更多技术资料

    资料下载:

    产品(20).png 附 (下载 0 次)

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥850
    上海冠导生物工程有限公司
    2025年07月13日询价
    询价
    上海哈灵生物科技有限公司
    2025年08月09日询价
    ¥800
    上海抚生实业有限公司
    2025年07月14日询价
    ¥1280
    上海泽叶生物科技有限公司
    2025年07月11日询价
    ¥1680
    上海沪震实业有限公司
    2025年06月25日询价
    文献支持
    5637人膀胱癌传代细胞活性强|送STR图谱
    ¥850 - 2150