PANC-1人胰腺癌传代细胞长期复苏|送STR图谱
文献支持

PANC-1人胰腺癌传代细胞长期复苏|送STR图谱

收藏
  • ¥850 - 2150
  • 冠导生物
  • PANC-1人胰腺癌传代细胞长期复苏|送STR图谱
  • 美国、德国、欧洲等
  • 2025年07月08日
    avatar
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 文献和实验
    • 技术资料
    • 品系

      详见细胞说明资料

    • 细胞类型

      详见细胞说明资料

    • 肿瘤类型

      详见细胞说明资料

    • 供应商

      上海冠导生物工程有限公司

    • 库存

      ≥100瓶

    • 生长状态

      详见细胞说明资料

    • 年限

      详见细胞说明资料

    • 运输方式

      常温运输【复苏细胞】或干冰运输【冻存细胞】

    • 器官来源

      详见细胞说明资料

    • 是否是肿瘤细胞

      详见细胞说明资料

    • 细胞形态

      详见细胞说明资料

    • 免疫类型

      详见细胞说明资料

    • 物种来源

      详见细胞说明资料

    • 相关疾病

      详见细胞说明资料

    • 组织来源

      详见细胞说明资料

    • 英文名

      PANC-1人胰腺癌传代细胞长期复苏|送STR图谱

    • 规格

      1*10(6)Cellls/瓶

    "PANC-1人胰腺癌传代细胞长期复苏|送STR图谱
    传代方法:1:2-1:4(首次传代建议1:2)
    生长特性:贴壁生长
    换液频率:每周2-3次
    背景资料:这株人胰腺癌细胞株源自于胰腺癌导管细胞,其倍增时间为52小时。染色体研究表明,该细胞染色体众数为63,包括3个独特标记的染色体和1个小环状染色体。该细胞的生长可被1unit/ml的左旋天冬酰胺酶抑制;能在软琼脂上生长;能在裸鼠上成瘤。
    在细胞培养操作中,每一个步骤都可能影响细胞系的命运。有时,细胞换液后突然死亡,这让科研人员困惑不已。那么,究竟是什么原因导致了这种情况呢?首先,换液操作过程中的不当处理是一个常见因素。例如,使用的移液器如果没有校准准确,吸取或添加培养液的量过多或过少,都可能使细胞所处的环境渗透压发生变化。细胞在渗透压失衡的环境中,水分子会快速进出细胞,导致细胞肿胀或皱缩,最终死亡。此外,如果在吸取旧培养液时过于靠近细胞层,容易造成细胞的机械性损伤,破坏细胞的完整性,使其无法维持正常的生理功能。其次,培养液的成分和质量也至关重要。新配制的培养液若在成分比例上出现偏差,如某些营养物质浓度过高或过低,可能无法满足细胞的生长需求,导致细胞因营养缺乏或中毒而死亡。而且,培养液若在储存或处理过程中受到污染,从而迅速致使细胞死亡。再者,培养环境的变化不容忽视。换液时,比如,温度过高会使细胞内蛋白质变性,温度过低则会降低细胞的活性和代谢速率;二氧化碳浓度的改变会影响培养液的酸碱度,进而干扰细胞的正常生理活动。所以细胞换液后死亡是多种因素综合作用的结果。
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    GM01099 Cells(拥有STR基因鉴定图谱)
    H2342 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:6传代 ;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HGE Cells、3AA Cells、MC 3T3-E1 Cells
    Caco-2/BBe Cells;背景说明:详见相关文献介绍;传代方法:1:6—1:10传代,每周换液2次;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:TB-1 Lu Cells、NB4 Cells、TE 671 Cells
    PANC-1人胰腺癌传代细胞长期复苏|送STR图谱
    产品包装形式:复苏细胞:T25培养瓶(一瓶)或冻存细胞:1ml冻存管(两支)
    来源说明:细胞主要来源ATCC、DSMZ等细胞库
    悬浮细胞不容易转染:悬浮细胞是指细胞生长不依赖支持物表面,在培养中呈悬浮状态生长,如淋巴细胞。在实验室经常会遇到悬浮细胞的转染,其和贴壁细胞转染还是有很大不同的。目前大多数实验室用的是脂质体类的转染试剂,脂质体转染是基于电荷吸引原理,先形成脂质体-DNA复合物,散布在细胞周围,然后通过细胞的内吞作用,将目的基因导入细胞内,而脂质体复合物与贴壁细胞的接触机会比悬浮细胞GAO出很多倍,所以,脂质体转染时悬浮细胞的转染效率要明显低于贴壁细胞。其次,脂质体试剂的毒性较大,这就使得悬浮细胞的转染更为困难了。另外,悬浮细胞不易培养,易死亡,也给细胞转染造成了一定的困难。为了提GAO悬浮细胞的转染效率,可以使用非脂质体的转染试剂,如纳米材料的。也可以使用电转染方法,针对悬浮细胞等难转染细胞还是挺不错的,电击对细胞有一定的损伤,ZuiHAO选用具有细胞膜修复功能的电转染试剂,可以将电击对细胞的伤害降到Zui低,悬浮细胞不易转染,选对试剂及良HAO的细胞培养环境才是关键。
    物种来源:Human\Mouse\Rat\Others
    BEAS-2B Cells;背景说明:从一位非癌个体的正常人支气管上皮病理切片分离出上皮细胞。这些细胞用腺病毒12-SV40病毒杂交病毒感染并克隆。DEAS-2B细胞保留了对血清反应进行鳞关分化的能力,并有用于筛选诱导或影响分化及致癌的化学或生物制剂。细胞角蛋白及SV40抗原染色阳性。;传代方法:消化3-5分钟。1:2。3天内可长满;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:PA-1 Cells、143TK- Cells、HCC0078 Cells
    SK-RC-20 Cells;背景说明:肾癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:CT 26 Cells、L 1210 Cells、TE 32.T Cells
    SUDHL6 Cells;背景说明:详见相关文献介绍;传代方法:1:3—1:6传代,3—4天换液1次;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:H841 Cells、RAOEC Cells、ATN-1 Cells
    PANC-1人胰腺癌传代细胞长期复苏|送STR图谱
    形态特性:上皮细胞样
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    贴壁细胞的传代培养,详细步骤如下:首先倒掉培养基,在这一步骤可以收集一些细胞上清做支原体检测;加入胰蛋白酶,一般T25是加2mL,盖好瓶盖,摇晃T25培养瓶,使胰蛋白酶均匀覆盖在细胞表面,放入培养箱2-3min,期间可在显微镜下观察,看到大部分细胞变圆,即可放入超净台,加入2倍的完全培养基,这里就是加4mL培养基,终止消化;将含有胰蛋白酶,细胞和培养基一起转移到离心管中,1000rpm/3min离心,去掉上清;新鲜的完全培养基重悬,根据细胞的生长特性和后续的实验需求进行传代,比如我养的Hepa1-6就长的比较快,不是着急用的话,我就会按1E6个细胞/T75培养瓶进行传代;但如果后两天要用,就会适当多传一点;还可通过显微镜计数后,直接用于细胞铺板,继续后续的实验。
    LLC1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:JHH-7 Cells、MDA-MB435 Cells、JROECL33 Cells
    NCIH69 Cells;背景说明:详见相关文献介绍;传代方法:1:2—1:4传代,每周换液2次;生长特性:悬浮生长,聚团;形态特性:聚团悬浮;相关产品有:RD 2 Cells、H-1963 Cells、ASPC1 Cells
    H358 Cells;背景说明:1981年从一位开始化疗之前的患者的肿瘤组织中分离建株。超微结构研究表明细胞质中有Clara细胞的特征结构细胞表达主要的肺表面结合蛋白SP-A的蛋白和RNA。不表达SP-B和SP-C。他们在软琼脂中的克隆形成效率为0.83%。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:P3/NS1/1-Ag4.1 Cells、NK-92 transfected with MFG-hIL2 Cells、ACC-2 Cells
    HEH2 Cells;背景说明:胚胎;心脏;成纤维样 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Walker/LLC-WRC256 Cells、SNU119 Cells、Huh-7.5 Cells
    NCI-H1944 Cells;背景说明:详见相关文献介绍;传代方法:1:3—1:6传代,每周换液2—3次;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:RBL2H3 Cells、RA Cells、NCI-H596 Cells
    CCRF-CEM C7 Cells;背景说明:急性T淋巴细胞白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:1301 Cells、Colon 26 Cells、Alexander Cells
    Bowes melanoma cells Cells;背景说明:详见相关文献介绍;传代方法:1:6—1:10传代,2天换液1次;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:HCC-1187 Cells、Panc327 Cells、QGY-7701 Cells
    MDCK Type II Cells;背景说明:详见相关文献介绍;传代方法:1:3传代,3-4天传1次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:LMH Cells、Michigan Cancer Foundation-12F Cells、HEC-1A Cells
    Be Wo Cells;背景说明:取自人绒癌脑转移组织,在仓鼠颊囊移植传代8年。利用移植瘤组织进行体外培养,建立细胞系。利用不同传代方法建立了不同亚系,JEG-3是其衍生克隆。该细胞可以产生雌激素、孕激素、雌酮、雌二醇、雌三醇、hCG、胎盘催乳素、角蛋白。;传代方法:1:3传代,3-4天换液一次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:MDAMB330 Cells、LNCaP C4-2B Cells、IMR-32 Cells
    HUT-125 Cells;背景说明:腺鳞状肺癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HEL-92_1_7 Cells、hTERT-RPE-1 Cells、VeroE6 Cells
    2B4 Cells;背景说明:前列腺癌;骨转移;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MOPC Cells、PK 15 Cells、KY180 Cells
    ssMCF-7 Cells;背景说明:MCF-7细胞保留了多个分化了的乳腺上皮的特性,包括:能通过胞质雌激素受体加工雌二醇并能形成圆形复合物(domes)。该细胞含有Tx-4癌基因。肿瘤坏死因子α(TNFalpha)可以抑制MCF-7细胞的生长。抗雌激素处理细胞能调变IGFBP'S的分泌。;传代方法:1:2传代,3-4天长满;生长特性:贴壁生长;形态特性:上皮样;相关产品有:NCI-SNU-C1 Cells、NCI.H522 Cells、AZ 521 Cells
    ATC241 Cells;背景说明:纤维肉瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HT 1080.T Cells、CA922 Cells、MDBK Cells
    SKRC-20 Cells;背景说明:肾癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NCI-H2342 Cells、JOSK-M Cells、SUM 52 Cells
    TGBC-11-TKB Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:RPMI7951 Cells、J82 COT Cells、LC-1 sq Cells
    HCT-116 Cells;背景说明:结肠腺癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:TGW-I-nu Cells、HS 1.Tes Cells、HCET Cells
    BT-20 Cells;背景说明:该细胞1958年由E.Y. Lasfargues 和 L. Ozzello 建系,源自一位74岁白人女性的乳腺癌组织。该细胞表达WNT3和WNT78。TNF alpha抑制该细胞生长。该细胞雌激素受体阴性,但表达5'外显子缺失的雌激素mRNA。;传代方法:1:2—1:4传代,2—3天换液一次;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:Ramos (RA 1) Cells、H-1694 Cells、MC-4 Cells
    1A8C3C10 Cells(拥有STR基因鉴定图谱)
    Abcam HeLa MAPK1 KO Cells(拥有STR基因鉴定图谱)
    AG24086 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line RRG127 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line XG848 Cells(拥有STR基因鉴定图谱)
    C0850 Cells(拥有STR基因鉴定图谱)
    CW60521 Cells(拥有STR基因鉴定图谱)
    DA06504 Cells(拥有STR基因鉴定图谱)
    Eph4 1424 Cells;背景说明:乳腺癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HDMEC Cells、RBMVEC Cells、LC-2-Ad Cells
    Cloudman S91 melanoma clone M-3 Cells;背景说明:黑色素瘤;雄性;DBA;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:451Lu Cells、BNL CL.2 Cells、HBL-1 [Human diffuse large B-cell lymphoma] Cells
    PANC-1人胰腺癌传代细胞长期复苏|送STR图谱
    BJAB-1 Cells;背景说明:Burkitt's淋巴瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:SF767 Cells、SkMel31 Cells、Hs739T Cells
    MDA-157 Cells;背景说明:该细胞源自一位患有乳腺髓样癌的44岁黑人女性,表达WNT7B癌基因,细胞与细胞边界处有细胞桥粒、微绒毛、张力细丝。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:SJ-RH30 Cells、HES [Human embryonic skin fibroblast] Cells、NCIH820 Cells
    HS-294-T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:混合星状和多边形;相关产品有:HSAEC1-KT Cells、TC-1[JHU-1] Cells、TALL1 Cells
    NCIH716 Cells;背景说明:从一位经5-尿嘧啶治疗的患者腹水中得到的细胞建立了这个细胞株。 与其它结直肠癌细胞系不同,这株细胞有多巴脱羧酶,细胞质中有核心致密的内分泌型颗粒。 这株细胞不表达TAG-72 或CA19-9抗原,也不生成癌胚抗原(CEA);传代方法:1:3—1:6传代,每周换液2—3次;生长特性:悬浮生长,聚团,少数贴壁;形态特性:上皮细胞样;相关产品有:GM03573A Cells、3D4/21 Cells、AMJ2C8 Cells
    ESC-410 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HOS-143B Cells、FOXNY Cells、HANK-1 Cells
    RPMC Cells;背景说明:腹膜间皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:RA-FLSs Cells、NeHepLxHT Cells、H2286 Cells
    328/12 Cells(拥有STR基因鉴定图谱)
    GM04154 Cells;背景说明:急性T淋巴细胞白血病;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:NE-1 Cells、PC9 Cells、CEL Cells
    SVHUC Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:H-2052 Cells、Factor Dependent Cell-Paterson 1 Cells、NCI-H716 Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    Menschliche Und Tierische Zellkulture-3 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:UACC 893 Cells、JVM2 Cells、LS-411N Cells
    USMC Cells;背景说明:血管平滑肌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:UT7 Cells、Hs 840.T Cells、HEK-293-F Cells
    22Rv1 Cells;背景说明:22RV1是来自异种移植(在阉割引起前列腺癌衰退又在其父亲的雄性激素信赖型CWR22嫁接后复发的小鼠中连续传代)的人前列腺癌上皮细胞系。此细胞系表达前列腺特异抗原。二羟基睾丸脂酮轻微刺激细胞生长,经westernblot检测溶解产物与抗雄性激素受体抗体起免疫反应。EGF刺激细胞生长,但TGFβ-1不能抑制细胞生长。该细胞在裸鼠中成瘤。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:MDA.MB.231 Cells、GM04680 Cells、UT-7 Cells
    MDA 1386 Cells;背景说明:舌鳞癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:LC2/Ad Cells、Huh-7.5.1 Cells、HCC2185 Cells
    ECV 304 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SK-MEL24 Cells、NCI-H596 Cells、THLE-2 Cells
    ZR7530 Cells;背景说明:ZR-75-30源自一位47岁女性黑人更年期侵入性导管癌患者的腹水。 细胞定性为人,非-HeLa,恶性乳房上皮癌起始。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:Caco2-BBE Cells、293-F Cells、H-1092 Cells
    GM15301 Cells(拥有STR基因鉴定图谱)
    HAP1 GOLIM4 (-) 2 Cells(拥有STR基因鉴定图谱)
    Hk-2 Cells;背景说明:该细胞属源于正常肾的近曲小管细胞,通过导入HPV-16 E6/E7基因而获得永生化。将含有HPV-16 E6/E7基因的重组的逆转录病毒载体pLXSN 16 E6/E7转染外生包装细胞Psi-2,Psi-2细胞产生的病毒再去感染兼嗜性包装细胞系PA317,最后将PA317产生的病毒颗粒导入正常的肾皮质近曲小管细胞。尽管pLXSN 16 E6/E7中含有新霉素抗性,但未用G418筛选转导克隆。Southern和FISH分析显示HK-2细胞来源于单克隆。PCR检测证实HK-2细胞基因组中含有E6/E7基因。;传代方法:1:4传代;2-3天换液1次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:B5537SKIN Cells、BT20 Cells、PC-10 Cells
    HEC1B Cells;背景说明:该细胞是H.Kuramoto1968年分离的HEC-1-A细胞亚株。不同於HEC-A-1的是:该亚株在培养第135天到190天之间表现出稳定的生长周期,且重现扁平,与亲本细胞系相比更具铺路石式样。此外主要染色体组是亲本细胞的两倍。;传代方法:1:3传代,2-3天换液一次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:PTK 2 Cells、MIMVEC Cells、OE-21 Cells
    CAL-51 Cells;背景说明:乳腺癌;胸腔积液转移;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:WEHI 164 Cells、HMVEC Cells、MC3T3 Cells
    P30-OHKUBO Cells;背景说明:详见相关文献介绍;传代方法:10^5 cells/60mm dish;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:BALB/3T3 (clone A31) Cells、SW13 Cells、Renal Carcinoma Cells
    675T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代,每周2-3次。;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:L-428 Cells、VM-CUB-I Cells、FRTL 5 Cells
    C3H/10T1/2 CL8 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:MT4 Cells、NUGC3 Cells、MCF.10A Cells
    H-2081 Cells;背景说明:详见相关文献介绍;传代方法:随细胞的密度而增加;生长特性:悬浮生长;形态特性:聚团悬浮;相关产品有:PK 15 Cells、NuTu-19 Cells、HCC-1569 Cells
    DH-82 Cells;背景说明:肾;Golden Retrieve;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:PANC-03-27 Cells、CMT167 Cells、BC-009 Cells
    HOBIT Cells(拥有STR基因鉴定图谱)
    J774.16 Cells(拥有STR基因鉴定图谱)
    MCF7/XBP1 Cells(拥有STR基因鉴定图谱)
    ND16563 Cells(拥有STR基因鉴定图谱)
    PR00285 Cells(拥有STR基因鉴定图谱)
    Ubigene HEK293 TICAM1 KO Cells(拥有STR基因鉴定图谱)
    WM239B Cells(拥有STR基因鉴定图谱)
    HCT116-SLC25A23-KO-c2 Cells(拥有STR基因鉴定图谱)
    Human Hepatocyte Line 5 Cells;背景说明:肝;HPV16转化;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:COLO206F Cells、NB.4 Cells、Huh7.5 Cells
    FCCH1024 Cells;背景说明:该细胞源自一位14岁患有T淋巴细胞白血病男性的外周血;传代方法:保持细胞密度在3—9×105cells/ml之间,1:5—1:10传代,每周换液2—3次;生长特性:悬浮生长;形态特性:圆形,单个或呈片;相关产品有:751-NA Cells、KBM-7 Cells、Emory University-3 Cells
    Tn 5B1-4 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:H2029 Cells、OV1/P Cells、Centre Antoine Lacassagne-78 Cells
    Hs746T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:CEMC1 Cells、TE-6 Cells、U-87 Cells
    HEK-293-F Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;悬浮生长;形态特性:上皮细胞样;相关产品有:201T Cells、NCI-H1048 Cells、STO Cells
    HEK-293-F Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;悬浮生长;形态特性:上皮细胞样;相关产品有:201T Cells、NCI-H1048 Cells、STO Cells
    F-36P Cells;背景说明:详见相关文献介绍;传代方法:每周2次换液;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Hepa 1-6 Cells、NB9 Cells、PLMVEC Cells
    PL-12 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:MOLT-3 Cells、NCIH747 Cells、NIE-115 Cells
    ETCC-007 Cells;背景说明:原位导管癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HEL-92-1-7 Cells、UT-7 Cells、HCC1187 Cells
    Tsup-1 Cells;背景说明:详见相关文献介绍;传代方法:2-3天换液1次。;生长特性:悬浮生长;形态特性:淋巴母细胞样 ;相关产品有:CCFSTTG1 Cells、58F Cells、HCC-1954BL Cells
    HEK 293-H Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Hs870T Cells、KYSE510 Cells、PLA801-95C Cells
    HEK-293-F Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;悬浮生长;形态特性:上皮细胞样;相关产品有:201T Cells、NCI-H1048 Cells、STO Cells
    ID8 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:IPI-2I Cells、RA 1 Cells、FHs 74 Int Cells
    PANC-1人胰腺癌传代细胞长期复苏|送STR图谱
    HMCB Cells;背景说明:详见相关文献介绍;传代方法:1:6—1:10传代,2天换液1次;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:Madin-Darby Bovine Kidney Cells、MDCKII-WT Cells、NPC-TW 01 Cells
    HIEC Cells;背景说明:肠;上皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Hs 600.T Cells、DoHH-2 Cells、CCRF.CEM Cells
    SK-MEL-128 Cells(拥有STR基因鉴定图谱)
    B5537SKIN Cells;背景说明:成纤维 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MLTC-1 Cells、HT 29 Cells、OVCAR-3 Cells
    Madison 109 Cells;背景说明:肺癌;BALB/c;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NCI-BL2141 Cells、SK RC 52 Cells、H510 Cells
    H4-II-E-C3 Cells;背景说明:在糖皮质激素、胰岛素或cAMP衍生物的诱导下可以产生酪酸基转移酶;可被逆转录病毒感染;可产生白蛋白、转铁蛋白、凝血酶原;在AxC大鼠中可以成瘤。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:Mel-624 Cells、CESS Cells、THEECs Cells
    Jurkat Cells;背景说明:该细胞源自一位14岁患有T淋巴细胞白血病男性的外周血;传代方法:保持细胞密度在3—9×105cells/ml之间,1:5—1:10传代,每周换液2—3次;生长特性:悬浮生长;形态特性:圆形,单个或呈片;相关产品有:Pt-K1 Cells、ACC2 Cells、mRMEC Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    NCI-H774 Cells;背景说明:详见相关文献介绍;传代方法:每周换液2次。;生长特性:悬浮生长;形态特性:详见产品说明;相关产品有:UMUC14 Cells、BE2_C Cells、CCC-HEL-1 Cells
    TW 01 Cells;背景说明:鼻咽癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:A20 Cells、ECC-1 Cells、SC Cells
    B958 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:J774A.1 Cells、C4-2 Bone metastatic Cells、NCI-H2195 Cells
    MeT-5A Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:A-549 Cells、SK-ES1 Cells、PANC 327 Cells
    H322 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:P3-x63-Ag8 653 Cells、Jiyoye Cells、293F Cells
    LOU-NH91 Cells;背景说明:肺鳞癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:CAL-33 Cells、NCI-H378 Cells、H747 Cells
    COLO-684 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:悬浮生长;形态特性:详见产品说明;相关产品有:DMS 273 Cells、WIL2S Cells、HR8348 Cells
    PC-9/S1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:SU86-86 Cells、Hs-578-T Cells、JJN3 Cells
    Rat Basophilic Leukemia-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SK MEL 28 Cells、CAL 148 Cells、LS513 Cells
    MCA-205 Cells;背景说明:纤维肉瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:LIM 1215 Cells、SK Mel 24 Cells、PLC Cells
    BayGenomics ES cell line CSH725 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line RST009 Cells(拥有STR基因鉴定图谱)
    BRCA84D Cells(拥有STR基因鉴定图谱)
    L.P3 Co-2 Cells(拥有STR基因鉴定图谱)
    PMab-295 Cells(拥有STR基因鉴定图谱)
    R52.120 Cells(拥有STR基因鉴定图谱)
    "    "PubMed=1630814
    Ruggeri B.A., Zhang S.-Y., Caamano J., DiRado M., Flynn S.D., Klein-Szanto A.J.P.
    Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes.
    Oncogene 7:1503-1511(1992)

    PubMed=7809022; DOI=10.1097/00006676-199409000-00018
    Sumi S., Beauchamp R.D., Townsend C.M. Jr., Pour P.M., Ishizuka J., Thompson J.C.
    Lovastatin inhibits pancreatic cancer growth regardless of RAS mutation.
    Pancreas 9:657-661(1994)

    PubMed=7961102; DOI=10.1111/j.1349-7006.1994.tb02898.x; PMCID=PMC5919355
    Suwa H., Yoshimura T., Yamaguchi N., Kanehira K., Manabe T., Imamura M., Hiai H., Fukumoto M.
    K-ras and p53 alterations in genomic DNA and transcripts of human pancreatic adenocarcinoma cell lines.
    Jpn. J. Cancer Res. 85:1005-1014(1994)

    PubMed=8026879; DOI=10.1002/ijc.2910580207
    Berrozpe G., Schaeffer J., Peinado M.A., Real F.X., Perucho M.
    Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer.
    Int. J. Cancer 58:185-191(1994)

    PubMed=8194712; DOI=10.1016/0016-5085(94)90422-7
    Simon B., Weinel R., Hohne M., Watz J., Schmidt J., Kortner G., Arnold R.
    Frequent alterations of the tumor suppressor genes p53 and DCC in human pancreatic carcinoma.
    Gastroenterology 106:1645-1651(1994)

    PubMed=8286197; DOI=10.1038/bjc.1994.24; PMCID=PMC1968784
    Lohr J.-M., Trautmann B., Gottler M., Peters S., Zauner I., Maillet B., Kloppel G.
    Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins.
    Br. J. Cancer 69:144-151(1994)

    PubMed=21607521; DOI=10.3892/or.1.6.1223
    Iguchi H., Morita R., Yasuda D., Takayanagi R., Ikeda Y., Takada Y., Shimazoe T., Nawata H., Kono A.
    Alterations of the p53 tumor-suppressor gene and ki-ras oncogene in human pancreatic cancer-derived cell-lines with different metastatic potential.
    Oncol. Rep. 1:1223-1227(1994)

    PubMed=9023415; DOI=10.1006/cimm.1996.1062
    Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.
    HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.
    Cell. Immunol. 175:101-110(1997)

    PubMed=9788440; DOI=10.1038/sj.onc.1202118
    Villanueva A., Garcia C., Paules Blazquez A.B., Vicente M., Megias M., Reyes G., de Villalonga P., Agell N., Lluis F., Bachs O., Capella G.
    Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells.
    Oncogene 17:1969-1978(1998)

    PubMed=10027410; DOI=10.1016/S0002-9440(10)65298-4; PMCID=PMC1850008
    Ghadimi B.M., Schrock E., Walker R.L., Wangsa D., Jauho A., Meltzer P.S., Ried T.
    Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.
    Am. J. Pathol. 154:525-536(1999)

    PubMed=11115575; DOI=10.3892/or.8.1.89
    Sun C.-L., Yamato T., Furukawa T., Ohnishi Y., Kijima H., Horii A.
    Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines.
    Oncol. Rep. 8:89-92(2001)

    PubMed=11169957; DOI=10.1002/1097-0215(200002)9999:9999<::AID-IJC1014>3.0.CO;2-U
    Wallrapp C., Hahnel S., Boeck W., Soder A., Mincheva A., Lichter P., Leder G., Gansauge F., Sorio C., Scarpa A., Gress T.M.
    Loss of the Y chromosome is a frequent chromosomal imbalance in pancreatic cancer and allows differentiation to chronic pancreatitis.
    Int. J. Cancer 91:340-344(2001)

    PubMed=11169959; DOI=10.1002/1097-0215(200002)9999:9999<::AID-IJC1049>3.0.CO;2-C
    Sirivatanauksorn V., Sirivatanauksorn Y., Gorman P.A., Davidson J.M., Sheer D., Moore P.S., Scarpa A., Edwards P.A.W., Lemoine N.R.
    Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping.
    Int. J. Cancer 91:350-358(2001)

    PubMed=11787853; DOI=10.1007/s004280100474
    Moore P.S., Sipos B., Orlandini S., Sorio C., Real F.X., Lemoine N.R., Gress T.M., Bassi C., Kloppel G., Kalthoff H., Ungefroren H., Lohr J.-M., Scarpa A.
    Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4.
    Virchows Arch. 439:798-802(2001)

    PubMed=12692724; DOI=10.1007/s00428-003-0784-4
    Sipos B., Moser S., Kalthoff H., Torok V., Lohr J.-M., Kloppel G.
    A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform.
    Virchows Arch. 442:444-452(2003)

    PubMed=12800145; DOI=10.1002/gcc.10218
    Adelaide J., Huang H.-E., Murati A., Alsop A.E., Orsetti B., Mozziconacci M.-J., Popovici C., Ginestier C., Letessier A., Basset C., Courtay-Cahen C., Jacquemier J., Theillet C., Birnbaum D., Edwards P.A.W., Chaffanet M.
    A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.
    Genes Chromosomes Cancer 37:333-345(2003)

    PubMed=14695172
    Iacobuzio-Donahue C.A., Ashfaq R., Maitra A., Adsay N.V., Shen-Ong G.L.-C., Berg K., Hollingsworth M.A., Cameron J.L., Yeo C.J., Kern S.E., Goggins M.G., Hruban R.H.
    Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.
    Cancer Res. 63:8614-8622(2003)

    PubMed=15126341; DOI=10.1158/0008-5472.CAN-03-3159
    Heidenblad M., Schoenmakers E.F.P.M., Jonson T., Gorunova L., Veltman J.A., van Kessel A.G., Hoglund M.
    Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.
    Cancer Res. 64:3052-3059(2004)

    PubMed=15367885; DOI=10.1097/00006676-200410000-00004
    Loukopoulos P., Kanetaka K., Takamura M., Shibata T., Sakamoto M., Hirohashi S.
    Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity.
    Pancreas 29:193-203(2004)

    PubMed=15688027; DOI=10.1038/sj.onc.1208383
    Heidenblad M., Lindgren D., Veltman J.A., Jonson T., Mahlamaki E.H., Gorunova L., van Kessel A.G., Schoenmakers E.F.P.M., Hoglund M.
    Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.
    Oncogene 24:1794-1801(2005)

    PubMed=15770730; DOI=10.3748/wjg.v11.i10.1521; PMCID=PMC4305696
    Ma J.-H., Patrut E., Schmidt J., Knaebel H.-P., Buchler M.W., Marten A.
    Synergistic effects of interferon-alpha in combination with chemoradiation on human pancreatic adenocarcinoma.
    World J. Gastroenterol. 11:1521-1528(2005)

    PubMed=16912165; DOI=10.1158/0008-5472.CAN-06-0721
    Calhoun E.S., Hucl T., Gallmeier E., West K.M., Arking D.E., Maitra A., Iacobuzio-Donahue C.A., Chakravarti A., Hruban R.H., Kern S.E.
    Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays.
    Cancer Res. 66:7920-7928(2006)

    PubMed=18298655; DOI=10.1111/j.1582-4934.2008.00289.x; PMCID=PMC3828895
    Pilarsky C., Ammerpohl O., Sipos B., Dahl E., Hartmann A., Wellmann A., Braunschweig T., Lohr J.-M., Jesenofsky R., Friess H., Wente M.N., Kristiansen G., Jahnke B., Denz A., Ruckert F., Schackert H.K., Kloppel G., Kalthoff H., Saeger H.-D., Grutzmann R.
    Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling.
    J. Cell. Mol. Med. 12:2823-2835(2008)

    PubMed=18380791; DOI=10.1111/j.1349-7006.2008.00779.x; PMCID=PMC11158928
    Suzuki A., Shibata T., Shimada Y., Murakami Y., Horii A., Shiratori K., Hirohashi S., Inazawa J., Imoto I.
    Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.
    Cancer Sci. 99:986-994(2008)

    PubMed=18575732; DOI=10.3892/or.20.1.155
    Kawaoka T., Oka M., Takashima M., Ueno T., Yamamoto K., Yahara N., Yoshino S., Hazama S.
    Adoptive immunotherapy for pancreatic cancer: cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1.
    Oncol. Rep. 20:155-163(2008)

    CLPUB00416
    Oberlin L.
    Treatment of pancreatic carcinoma cell lines in vitro and vivo with a monoclonal antibody against the transferrin receptor.
    Thesis VMD (2009); Justus-Liebig-Universitat Giessen; Giessen; Germany

    DOI=10.4172/jpb.1000057
    Yamada M., Fujii K., Koyama K., Hirohashi S., Kondo T.
    The proteomic profile of pancreatic cancer cell lines corresponding to carcinogenesis and metastasis.
    J. Proteomics Bioinformatics 2:1-18(2009)

    PubMed=19077451; DOI=10.1159/000178871
    Harada T., Chelala C., Crnogorac-Jurcevic T., Lemoine N.R.
    Genome-wide analysis of pancreatic cancer using microarray-based techniques.
    Pancreatology 9:13-24(2009)

    PubMed=20037478; DOI=10.4161/cbt.8.21.9685; PMCID=PMC2824894
    Kent O.A., Mullendore M.E., Wentzel E.A., Lopez-Romero P., Tan A.-C., Alvarez H., West K.M., Ochs M.F., Hidalgo M., Arking D.E., Maitra A., Mendell J.T.
    A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.
    Cancer Biol. Ther. 8:2013-2024(2009)

    PubMed=20418756; DOI=10.1097/MPA.0b013e3181c15963; PMCID=PMC2860631
    Deer E.L., Gonzalez-Hernandez J., Coursen J.D., Shea J.E., Ngatia J.G., Scaife C.L., Firpo M.A., Mulvihill S.J.
    Phenotype and genotype of pancreatic cancer cell lines.
    Pancreas 39:425-435(2010)

    PubMed=21515691; DOI=10.1074/jbc.M111.226795; PMCID=PMC3121343
    McCluskey J.T., Hamid M., Guo-Parke H., McClenaghan N.H., Gomis R., Flatt P.R.
    Development and functional characterization of insulin-releasing human pancreatic beta cell lines produced by electrofusion.
    J. Biol. Chem. 286:21982-21992(2011)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=22585861; DOI=10.1158/2159-8290.CD-11-0224; PMCID=PMC5057396
    Marcotte R., Brown K.R., Suarez Saiz F.J., Sayad A., Karamboulas K., Krzyzanowski P.M., Sircoulomb F., Medrano M., Fedyshyn Y., Koh J.L.-Y., van Dyk D., Fedyshyn B., Luhova M., Brito G.C., Vizeacoumar F.J., Vizeacoumar F.S., Datti A., Kasimer D., Buzina A., Mero P., Misquitta C., Normand J., Haider M., Ketela T., Wrana J.L., Rottapel R., Neel B.G., Moffat J.
    Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
    Cancer Discov. 2:172-189(2012)

    PubMed=23325432; DOI=10.1101/gr.147942.112; PMCID=PMC3589544
    Varley K.E., Gertz J., Bowling K.M., Parker S.L., Reddy T.E., Pauli-Behn F., Cross M.K., Williams B.A., Stamatoyannopoulos J.A., Crawford G.E., Absher D.M., Wold B.J., Myers R.M.
    Dynamic DNA methylation across diverse human cell lines and tissues.
    Genome Res. 23:555-567(2013)

    PubMed=25167228; DOI=10.1038/bjc.2014.475; PMCID=PMC4453732
    Hamidi H., Lu M., Chau K., Anderson L., Fejzo M.S., Ginther C., Linnartz R., Zubel A., Slamon D.J., Finn R.S.
    KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.
    Br. J. Cancer 111:1788-1801(2014)

    PubMed=25394408; DOI=10.3892/or.2014.3599
    Wang C.-F., Zhang W.-W., Fu M.-J., Yang A.-Q., Huang H.-H., Xie J.-M.
    Establishment of human pancreatic cancer gemcitabine-resistant cell line with ribonucleotide reductase overexpression.
    Oncol. Rep. 33:383-390(2015)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=26216984; DOI=10.1073/pnas.1501605112; PMCID=PMC4538616
    Daemen A., Peterson D., Sahu N., McCord R., Du X.-N., Liu B., Kowanetz K., Hong R., Moffat J., Gao M., Boudreau A., Mroue R., Corson L., O'Brien T., Qing J., Sampath D., Merchant M., Yauch R.L., Manning G., Settleman J., Hatzivassiliou G., Evangelista M.
    Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.
    Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=26884312; DOI=10.1038/srep21648; PMCID=PMC4756684
    Gradiz R., Silva H.C., Carvalho L., Botelho M.F., Mota-Pinto A.
    MIA PaCa-2 and PANC-1 -- pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors.
    Sci. Rep. 6:21648-21648(2016)

    PubMed=27067801; DOI=10.1186/s12885-016-2297-y; PMCID=PMC4828819
    Miura K., Kimura K., Amano R., Yamazoe S., Ohira G., Murata A., Nishio K., Hasegawa T., Yashiro M., Nakata B., Ohira M., Hirakawa K.
    Establishment and characterization of new cell lines of anaplastic pancreatic cancer, which is a rare malignancy: OCUP-A1 and OCUP-A2.
    BMC Cancer 16:268.1-268.13(2016)

    PubMed=27259358; DOI=10.1074/mcp.M116.058313; PMCID=PMC4974343
    Humphrey E.S., Su S.-P., Nagrial A.M., Hochgrafe F., Pajic M., Lehrbach G.M., Parton R.G., Yap A.S., Horvath L.G., Chang D.K., Biankin A.V., Wu J.-M., Daly R.J.
    Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.
    Mol. Cell. Proteomics 15:2671-2685(2016)

    PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
    Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
    Characterization of human cancer cell lines by reverse-phase protein arrays.
    Cancer Cell 31:225-239(2017)

    PubMed=30156359; DOI=10.1111/cas.13783; PMCID=PMC6215881
    Sato T., Muramatsu T., Tanabe M., Inazawa J.
    Identification and characterization of transforming growth factor beta induced in circulating tumor cell subline from pancreatic cancer cell line.
    Cancer Sci. 109:3623-3633(2018)

    PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
    Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
    An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
    Cancer Res. 79:1263-1273(2019)

    PubMed=31037374; DOI=10.1007/s00216-019-01814-1
    Lagies S., Schlimpert M., Braun L.M., Kather M., Plagge J., Erbes T., Wittel U.A., Kammerer B.
    Unraveling altered RNA metabolism in pancreatic cancer cells by liquid-chromatography coupling to ion mobility mass spectrometry.
    Anal. Bioanal. Chem. 411:6319-6328(2019)

    PubMed=31068700; DOI=10.1038/s41586-019-1186-3; PMCID=PMC6697103
    Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. 3rd, Barretina J.G., Gelfand E.T., Bielski C.M., Li H.-X., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y.-L., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
    Next-generation characterization of the Cancer Cell Line Encyclopedia.
    Nature 569:503-508(2019)"

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献
    "PubMed=1630814
    Ruggeri B.A., Zhang S.-Y., Caamano J., DiRado M., Flynn S.D., Klein-Szanto A.J.P.
    Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes.
    Oncogene 7:1503-1511(1992)

    PubMed=7809022; DOI=10.1097/00006676-199409000-00018
    Sumi S., Beauchamp R.D., Townsend C.M. Jr., Pour P.M., Ishizuka J., Thompson J.C.
    Lovastatin inhibits pancreatic cancer growth regardless of RAS mutation.
    Pancreas 9:657-661(1994)

    PubMed=7961102; DOI=10.1111/j.1349-7006.1994.tb02898.x; PMCID=PMC5919355
    Suwa H., Yoshimura T., Yamaguchi N., Kanehira K., Manabe T., Imamura M., Hiai H., Fukumoto M.
    K-ras and p53 alterations in genomic DNA and transcripts of human pancreatic adenocarcinoma cell lines.
    Jpn. J. Cancer Res. 85:1005-1014(1994)

    PubMed=8026879; DOI=10.1002/ijc.2910580207
    Berrozpe G., Schaeffer J., Peinado M.A., Real F.X., Perucho M.
    Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer.
    Int. J. Cancer 58:185-191(1994)

    PubMed=8194712; DOI=10.1016/0016-5085(94)90422-7
    Simon B., Weinel R., Hohne M., Watz J., Schmidt J., Kortner G., Arnold R.
    Frequent alterations of the tumor suppressor genes p53 and DCC in human pancreatic carcinoma.
    Gastroenterology 106:1645-1651(1994)

    PubMed=8286197; DOI=10.1038/bjc.1994.24; PMCID=PMC1968784
    Lohr J.-M., Trautmann B., Gottler M., Peters S., Zauner I., Maillet B., Kloppel G.
    Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins.
    Br. J. Cancer 69:144-151(1994)

    PubMed=21607521; DOI=10.3892/or.1.6.1223
    Iguchi H., Morita R., Yasuda D., Takayanagi R., Ikeda Y., Takada Y., Shimazoe T., Nawata H., Kono A.
    Alterations of the p53 tumor-suppressor gene and ki-ras oncogene in human pancreatic cancer-derived cell-lines with different metastatic potential.
    Oncol. Rep. 1:1223-1227(1994)

    PubMed=9023415; DOI=10.1006/cimm.1996.1062
    Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.
    HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.
    Cell. Immunol. 175:101-110(1997)

    PubMed=9788440; DOI=10.1038/sj.onc.1202118
    Villanueva A., Garcia C., Paules Blazquez A.B., Vicente M., Megias M., Reyes G., de Villalonga P., Agell N., Lluis F., Bachs O., Capella G.
    Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells.
    Oncogene 17:1969-1978(1998)

    PubMed=10027410; DOI=10.1016/S0002-9440(10)65298-4; PMCID=PMC1850008
    Ghadimi B.M., Schrock E., Walker R.L., Wangsa D., Jauho A., Meltzer P.S., Ried T.
    Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.
    Am. J. Pathol. 154:525-536(1999)

    PubMed=11115575; DOI=10.3892/or.8.1.89
    Sun C.-L., Yamato T., Furukawa T., Ohnishi Y., Kijima H., Horii A.
    Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines.
    Oncol. Rep. 8:89-92(2001)

    PubMed=11169957; DOI=10.1002/1097-0215(200002)9999:9999<::AID-IJC1014>3.0.CO;2-U
    Wallrapp C., Hahnel S., Boeck W., Soder A., Mincheva A., Lichter P., Leder G., Gansauge F., Sorio C., Scarpa A., Gress T.M.
    Loss of the Y chromosome is a frequent chromosomal imbalance in pancreatic cancer and allows differentiation to chronic pancreatitis.
    Int. J. Cancer 91:340-344(2001)

    PubMed=11169959; DOI=10.1002/1097-0215(200002)9999:9999<::AID-IJC1049>3.0.CO;2-C
    Sirivatanauksorn V., Sirivatanauksorn Y., Gorman P.A., Davidson J.M., Sheer D., Moore P.S., Scarpa A., Edwards P.A.W., Lemoine N.R.
    Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping.
    Int. J. Cancer 91:350-358(2001)

    PubMed=11787853; DOI=10.1007/s004280100474
    Moore P.S., Sipos B., Orlandini S., Sorio C., Real F.X., Lemoine N.R., Gress T.M., Bassi C., Kloppel G., Kalthoff H., Ungefroren H., Lohr J.-M., Scarpa A.
    Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4.
    Virchows Arch. 439:798-802(2001)

    PubMed=12692724; DOI=10.1007/s00428-003-0784-4
    Sipos B., Moser S., Kalthoff H., Torok V., Lohr J.-M., Kloppel G.
    A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform.
    Virchows Arch. 442:444-452(2003)

    PubMed=12800145; DOI=10.1002/gcc.10218
    Adelaide J., Huang H.-E., Murati A., Alsop A.E., Orsetti B., Mozziconacci M.-J., Popovici C., Ginestier C., Letessier A., Basset C., Courtay-Cahen C., Jacquemier J., Theillet C., Birnbaum D., Edwards P.A.W., Chaffanet M.
    A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.
    Genes Chromosomes Cancer 37:333-345(2003)

    PubMed=14695172
    Iacobuzio-Donahue C.A., Ashfaq R., Maitra A., Adsay N.V., Shen-Ong G.L.-C., Berg K., Hollingsworth M.A., Cameron J.L., Yeo C.J., Kern S.E., Goggins M.G., Hruban R.H.
    Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.
    Cancer Res. 63:8614-8622(2003)

    PubMed=15126341; DOI=10.1158/0008-5472.CAN-03-3159
    Heidenblad M., Schoenmakers E.F.P.M., Jonson T., Gorunova L., Veltman J.A., van Kessel A.G., Hoglund M.
    Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.
    Cancer Res. 64:3052-3059(2004)

    PubMed=15367885; DOI=10.1097/00006676-200410000-00004
    Loukopoulos P., Kanetaka K., Takamura M., Shibata T., Sakamoto M., Hirohashi S.
    Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity.
    Pancreas 29:193-203(2004)

    PubMed=15688027; DOI=10.1038/sj.onc.1208383
    Heidenblad M., Lindgren D., Veltman J.A., Jonson T., Mahlamaki E.H., Gorunova L., van Kessel A.G., Schoenmakers E.F.P.M., Hoglund M.
    Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.
    Oncogene 24:1794-1801(2005)

    PubMed=15770730; DOI=10.3748/wjg.v11.i10.1521; PMCID=PMC4305696
    Ma J.-H., Patrut E., Schmidt J., Knaebel H.-P., Buchler M.W., Marten A.
    Synergistic effects of interferon-alpha in combination with chemoradiation on human pancreatic adenocarcinoma.
    World J. Gastroenterol. 11:1521-1528(2005)

    PubMed=16912165; DOI=10.1158/0008-5472.CAN-06-0721
    Calhoun E.S., Hucl T., Gallmeier E., West K.M., Arking D.E., Maitra A., Iacobuzio-Donahue C.A., Chakravarti A., Hruban R.H., Kern S.E.
    Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays.
    Cancer Res. 66:7920-7928(2006)

    PubMed=18298655; DOI=10.1111/j.1582-4934.2008.00289.x; PMCID=PMC3828895
    Pilarsky C., Ammerpohl O., Sipos B., Dahl E., Hartmann A., Wellmann A., Braunschweig T., Lohr J.-M., Jesenofsky R., Friess H., Wente M.N., Kristiansen G., Jahnke B., Denz A., Ruckert F., Schackert H.K., Kloppel G., Kalthoff H., Saeger H.-D., Grutzmann R.
    Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling.
    J. Cell. Mol. Med. 12:2823-2835(2008)

    PubMed=18380791; DOI=10.1111/j.1349-7006.2008.00779.x; PMCID=PMC11158928
    Suzuki A., Shibata T., Shimada Y., Murakami Y., Horii A., Shiratori K., Hirohashi S., Inazawa J., Imoto I.
    Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.
    Cancer Sci. 99:986-994(2008)

    PubMed=18575732; DOI=10.3892/or.20.1.155
    Kawaoka T., Oka M., Takashima M., Ueno T., Yamamoto K., Yahara N., Yoshino S., Hazama S.
    Adoptive immunotherapy for pancreatic cancer: cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1.
    Oncol. Rep. 20:155-163(2008)

    CLPUB00416
    Oberlin L.
    Treatment of pancreatic carcinoma cell lines in vitro and vivo with a monoclonal antibody against the transferrin receptor.
    Thesis VMD (2009); Justus-Liebig-Universitat Giessen; Giessen; Germany

    DOI=10.4172/jpb.1000057
    Yamada M., Fujii K., Koyama K., Hirohashi S., Kondo T.
    The proteomic profile of pancreatic cancer cell lines corresponding to carcinogenesis and metastasis.
    J. Proteomics Bioinformatics 2:1-18(2009)

    PubMed=19077451; DOI=10.1159/000178871
    Harada T., Chelala C., Crnogorac-Jurcevic T., Lemoine N.R.
    Genome-wide analysis of pancreatic cancer using microarray-based techniques.
    Pancreatology 9:13-24(2009)

    PubMed=20037478; DOI=10.4161/cbt.8.21.9685; PMCID=PMC2824894
    Kent O.A., Mullendore M.E., Wentzel E.A., Lopez-Romero P., Tan A.-C., Alvarez H., West K.M., Ochs M.F., Hidalgo M., Arking D.E., Maitra A., Mendell J.T.
    A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.
    Cancer Biol. Ther. 8:2013-2024(2009)

    PubMed=20418756; DOI=10.1097/MPA.0b013e3181c15963; PMCID=PMC2860631
    Deer E.L., Gonzalez-Hernandez J., Coursen J.D., Shea J.E., Ngatia J.G., Scaife C.L., Firpo M.A., Mulvihill S.J.
    Phenotype and genotype of pancreatic cancer cell lines.
    Pancreas 39:425-435(2010)

    PubMed=21515691; DOI=10.1074/jbc.M111.226795; PMCID=PMC3121343
    McCluskey J.T., Hamid M., Guo-Parke H., McClenaghan N.H., Gomis R., Flatt P.R.
    Development and functional characterization of insulin-releasing human pancreatic beta cell lines produced by electrofusion.
    J. Biol. Chem. 286:21982-21992(2011)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=22585861; DOI=10.1158/2159-8290.CD-11-0224; PMCID=PMC5057396
    Marcotte R., Brown K.R., Suarez Saiz F.J., Sayad A., Karamboulas K., Krzyzanowski P.M., Sircoulomb F., Medrano M., Fedyshyn Y., Koh J.L.-Y., van Dyk D., Fedyshyn B., Luhova M., Brito G.C., Vizeacoumar F.J., Vizeacoumar F.S., Datti A., Kasimer D., Buzina A., Mero P., Misquitta C., Normand J., Haider M., Ketela T., Wrana J.L., Rottapel R., Neel B.G., Moffat J.
    Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
    Cancer Discov. 2:172-189(2012)

    PubMed=23325432; DOI=10.1101/gr.147942.112; PMCID=PMC3589544
    Varley K.E., Gertz J., Bowling K.M., Parker S.L., Reddy T.E., Pauli-Behn F., Cross M.K., Williams B.A., Stamatoyannopoulos J.A., Crawford G.E., Absher D.M., Wold B.J., Myers R.M.
    Dynamic DNA methylation across diverse human cell lines and tissues.
    Genome Res. 23:555-567(2013)

    PubMed=25167228; DOI=10.1038/bjc.2014.475; PMCID=PMC4453732
    Hamidi H., Lu M., Chau K., Anderson L., Fejzo M.S., Ginther C., Linnartz R., Zubel A., Slamon D.J., Finn R.S.
    KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.
    Br. J. Cancer 111:1788-1801(2014)

    PubMed=25394408; DOI=10.3892/or.2014.3599
    Wang C.-F., Zhang W.-W., Fu M.-J., Yang A.-Q., Huang H.-H., Xie J.-M.
    Establishment of human pancreatic cancer gemcitabine-resistant cell line with ribonucleotide reductase overexpression.
    Oncol. Rep. 33:383-390(2015)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=26216984; DOI=10.1073/pnas.1501605112; PMCID=PMC4538616
    Daemen A., Peterson D., Sahu N., McCord R., Du X.-N., Liu B., Kowanetz K., Hong R., Moffat J., Gao M., Boudreau A., Mroue R., Corson L., O'Brien T., Qing J., Sampath D., Merchant M., Yauch R.L., Manning G., Settleman J., Hatzivassiliou G., Evangelista M.
    Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.
    Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=26884312; DOI=10.1038/srep21648; PMCID=PMC4756684
    Gradiz R., Silva H.C., Carvalho L., Botelho M.F., Mota-Pinto A.
    MIA PaCa-2 and PANC-1 -- pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors.
    Sci. Rep. 6:21648-21648(2016)

    PubMed=27067801; DOI=10.1186/s12885-016-2297-y; PMCID=PMC4828819
    Miura K., Kimura K., Amano R., Yamazoe S., Ohira G., Murata A., Nishio K., Hasegawa T., Yashiro M., Nakata B., Ohira M., Hirakawa K.
    Establishment and characterization of new cell lines of anaplastic pancreatic cancer, which is a rare malignancy: OCUP-A1 and OCUP-A2.
    BMC Cancer 16:268.1-268.13(2016)

    PubMed=27259358; DOI=10.1074/mcp.M116.058313; PMCID=PMC4974343
    Humphrey E.S., Su S.-P., Nagrial A.M., Hochgrafe F., Pajic M., Lehrbach G.M., Parton R.G., Yap A.S., Horvath L.G., Chang D.K., Biankin A.V., Wu J.-M., Daly R.J.
    Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.
    Mol. Cell. Proteomics 15:2671-2685(2016)

    PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
    Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
    Characterization of human cancer cell lines by reverse-phase protein arrays.
    Cancer Cell 31:225-239(2017)

    PubMed=30156359; DOI=10.1111/cas.13783; PMCID=PMC6215881
    Sato T., Muramatsu T., Tanabe M., Inazawa J.
    Identification and characterization of transforming growth factor beta induced in circulating tumor cell subline from pancreatic cancer cell line.
    Cancer Sci. 109:3623-3633(2018)

    PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
    Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
    An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
    Cancer Res. 79:1263-1273(2019)

    PubMed=31037374; DOI=10.1007/s00216-019-01814-1
    Lagies S., Schlimpert M., Braun L.M., Kather M., Plagge J., Erbes T., Wittel U.A., Kammerer B.
    Unraveling altered RNA metabolism in pancreatic cancer cells by liquid-chromatography coupling to ion mobility mass spectrometry.
    Anal. Bioanal. Chem. 411:6319-6328(2019)

    PubMed=31068700; DOI=10.1038/s41586-019-1186-3; PMCID=PMC6697103
    Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. 3rd, Barretina J.G., Gelfand E.T., Bielski C.M., Li H.-X., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y.-L., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
    Next-generation characterization of the Cancer Cell Line Encyclopedia.
    Nature 569:503-508(2019)"
    图标技术资料

    需要更多技术资料 索取更多技术资料

    资料下载:

    产品(58).jpg 附 (下载 0 次)

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥850
    上海冠导生物工程有限公司
    2025年07月15日询价
    询价
    上海哈灵生物科技有限公司
    2025年09月02日询价
    ¥1300
    杭州囊萤科技有限公司
    2025年06月19日询价
    ¥1200
    上海艾研生物科技有限公司
    2025年07月05日询价
    ¥1580
    武汉华尔纳生物科技有限公司
    2025年07月13日询价
    文献支持
    PANC-1人胰腺癌传代细胞长期复苏|送STR图谱
    ¥850 - 2150