NAMALWA人Burkitt's淋巴瘤传代细胞长期复苏|送STR图谱
文献支持

NAMALWA人Burkitt's淋巴瘤传代细胞长期复苏|送

STR图谱
收藏
  • ¥850 - 2150
  • 冠导生物
  • NAMALWA人Burkitt's淋巴瘤传代细胞长期复苏|送STR图谱
  • 美国、德国、欧洲等
  • 2025年07月14日
    avatar
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 文献和实验
    • 技术资料
    • 品系

      详见细胞说明资料

    • 细胞类型

      详见细胞说明资料

    • 肿瘤类型

      详见细胞说明资料

    • 供应商

      上海冠导生物工程有限公司

    • 库存

      ≥100瓶

    • 生长状态

      详见细胞说明资料

    • 年限

      详见细胞说明资料

    • 运输方式

      常温运输【复苏细胞】或干冰运输【冻存细胞】

    • 器官来源

      详见细胞说明资料

    • 是否是肿瘤细胞

      详见细胞说明资料

    • 细胞形态

      详见细胞说明资料

    • 免疫类型

      详见细胞说明资料

    • 物种来源

      详见细胞说明资料

    • 相关疾病

      详见细胞说明资料

    • 组织来源

      详见细胞说明资料

    • 英文名

      NAMALWA人Burkitt's淋巴瘤传代细胞长期复苏|送STR图谱

    • 规格

      1*10(6)Cellls/瓶

    "NAMALWA人Burkitt's淋巴瘤传代细胞长期复苏|送STR图谱
    传代方法:1:2-1:4(首次传代建议1:2)
    生长特性:悬浮生长
    换液频率:每周2-3次
    背景资料:最初是从一名患有Burkitt's淋巴瘤的患者的肿瘤组织中分离出来的。是一种高度恶性的B细胞淋巴瘤,常见于儿童和年轻人。有EB病毒基因组。
    在细胞传代过程中,离心操作后的上清液处理是一个关键步骤,而关于是用移液枪吸走还是直接倒掉上清液,需要综合多方面因素来考量。使用移液枪吸走上清液具有一定的优势。移液枪能够较为精准地控制吸取的量和速度,可以地减少对细胞沉淀的扰动。可以根据实际情况尽可能地吸净上清液,减少残留血清或培养基成分对后续细胞培养的潜在影响,比如残留的血清可能会改变新培养基的营养成分比例或带来一些未知的生长因子干扰。然而,直接倒掉上清液也并非不可行。在处理一些细胞数量较多、细胞耐受性较好且对实验精度要求并非极高的细胞传代时,直接倒掉上清液能够提高操作效率,节省时间。但这种方式存在一定风险,直接倾倒时较难控制力度和角度,如果操作不慎,容易使细胞沉淀随着上清液一起流出,导致细胞损失,而且可能会因液体快速流下冲击细胞沉淀造成细胞的物理性损伤。在实际的细胞传代操作中,应根据细胞的特性、实验的要求以及个人的操作熟练程度来选择合适的上清液处理方式。对于新手或者处理珍贵细胞系时,建议优先采用移液枪吸走的方式,以保障细胞的活性和传代的成功率。而在积累了丰富经验且对实验条件有充分把握的情况下,可以根据具体情况灵活运用直接倒掉上清液的方法,在保证实验质量的同时提高工作效率。
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    GM02595 Cells(拥有STR基因鉴定图谱)
    H-865 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Huh-7.5 Cells、A20 Cells、SKES-1 Cells
    P388-D1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:SCL-I Cells、SU8686 Cells、CoCL3 Cells
    NAMALWA人Burkitt's淋巴瘤传代细胞长期复苏|送STR图谱
    产品包装形式:复苏细胞:T25培养瓶(一瓶)或冻存细胞:1ml冻存管(两支)
    来源说明:细胞主要来源ATCC、DSMZ等细胞库
    预防细胞污染的注意事项:实验进行前,超净台用紫外灯照射30-60min,然后用75%酒精擦拭超净台台面,并开启超净台风扇运转10min左右再开始实验操作。实验用品用75%酒精擦拭后才能放入超净台内;实验用品用完应移出超净台,以利于气流的流通。实验完成后用75%酒精擦拭超净台台面。每次操作只处理一种细胞;即使不同细胞使用相同的培养基也不要共享同一瓶培养基,避免细胞间的交叉污染。操作时小心取用无菌的物品,避免污染。勿碰触吸管尖头,不小心碰触后应立即更换;不要在打开的容器瓶口正上方操作,容器打开后,倾斜45°操作,操作完成后及时盖上瓶盖。CO2培养箱的清洁是较易被忽视的地方,应1-2个月对培养箱定期进行清洁消毒。先用75%酒精擦拭培养箱内壁、隔板、水盘2-3次,用双蒸水清洗,再用酒精棉球擦拭一遍,后紫外灯照射4h以上。水盘内加入无菌水(应每周更换),待培养箱内温度、湿度、CO2浓度稳定后再放入细胞。定期清洗或更换超净台过滤膜、预滤网。
    物种来源:Human\Mouse\Rat\Others
    PANC 327 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HepG2/C3A Cells、PC-3M IE8 Cells、2E8 Cells
    MDAMB415 Cells;背景说明:这株细胞表达WNT7B癌基因。8168088].带瘤患者来自巴拉圭,虽然填报的是白人,但细胞表型存在G6PDA型,显示其属于混血。细胞株形成平展延伸的上皮细胞样,在电镜下呈现结节,伴随着延伸的微管和微板。不容易用胰酶消化。;传代方法:消化5-10分钟。1:2。4-5天长满。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:293F Cells、SCL-I Cells、MDA436 Cells
    CMEC/D3 Cells;背景说明:脑微血管;内皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:DB Cells、GM00215A Cells、FBHE Cells
    NAMALWA人Burkitt's淋巴瘤传代细胞长期复苏|送STR图谱
    形态特性:淋巴母细胞样
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    公司细胞系主要引进ATCC、DSMZ、JCRB、KCLB、RIKEN、ECACC等细胞库,细胞系体外培养,它们会成长为单层细胞,附着或紧贴在培养瓶上,或悬浮在体外的溶液中,细胞系复苏周期短,公司细胞系状态良好,饱满,有光泽等优点。EDTA的作用:许多人不用胰酶,只用EDTA,或者用胰酶/EDTA联合作用。这里要明白,胰酶切割细胞外基质的一些负责粘连和附着的蛋白,而EDTA通过螯合Ca离子,作用于整联蛋白的活性,所以EDTA的作用更加温和。有的人在胰酶里添加一些EDTA,或者对付特别难消化的细胞,添加多一些EDTA,就是这个道理。一般不要试图延长消化时间(如果10min还消化不下来的话),而应该想其它办法。
    HCC1937 Cells;背景说明:这株细胞1995年10月13日最初来源于原发性导管癌, 用了11.5个月建株。肿瘤分类为TNM IIB期, 3级。BRCA1分析表明这株细胞是BRCA1 5382C突变纯合的, 而来源于同一病人的类淋巴母细胞细胞株在这个突变位点上是杂合的。 另两个家庭成员也有这个突变; 一个同卵双生姐妹也患有乳腺癌。这株细胞有一个后天的TP53突变, 而其野生型等位基因丢失; 一个PTEN基因的后天的纯合缺失, 以及多个与乳腺癌发病机理相关的位点上发生的杂合突变。这株细胞Her2-neu和p53表达都呈阴性。;传代方法:1:2传代;4-5天传代一次。;生长特性:贴壁生长;形态特性:上皮样;多角形;相关产品有:JROECL 21 Cells、SHSY-5Y Cells、DMS53 Cells
    MIN-6 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:SCC090 Cells、DCS Cells、Caov-4 Cells
    NCI-H69C Cells;背景说明:详见相关文献介绍;传代方法:1:2—1:4传代,每周换液2次;生长特性:悬浮生长,聚团;形态特性:聚团悬浮;相关产品有:SK.MEL.28 Cells、KNS42 Cells、HEK;293 Cells
    190PT Cells;背景说明:乳腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Hs 888.T Cells、OCM1A Cells、Calu 3 Cells
    AKR Cells;背景说明:食管癌;AKR;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:PA-TU S Cells、RS 4;11 Cells、184A1 Cells
    CV-1.K Cells;背景说明:CV-1细胞株是1964年由JensenFC等建系的,源自成年雄性非洲绿猴肾,被用于Rous肉瘤病毒的转染研究。可作为SV40载体的转染宿主。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:OVMANA Cells、Ku812F Cells、RH8994 Cells
    COLO 741 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:NCI-H820 Cells、hs 68 Cells、LA-795 Cells
    L 428 Cells;背景说明:霍奇金淋巴瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:SNU475 Cells、HCC-1833 Cells、QGP1 Cells
    NCI-SNU-878 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:VERO C 1008 Cells、CCRF-CEM C7 Cells、COR L279 Cells
    SKES-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:5传代;每周换液2-3次;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:上皮样;相关产品有:EFM-192B Cells、WRL 68 Cells、KMB-17 Cells
    NCI H716 Cells;背景说明:从一位经5-尿嘧啶治疗的患者腹水中得到的细胞建立了这个细胞株。 与其它结直肠癌细胞系不同,这株细胞有多巴脱羧酶,细胞质中有核心致密的内分泌型颗粒。 这株细胞不表达TAG-72 或CA19-9抗原,也不生成癌胚抗原(CEA);传代方法:1:3—1:6传代,每周换液2—3次;生长特性:悬浮生长,聚团,少数贴壁;形态特性:上皮细胞样;相关产品有:OCI-Ly10 Cells、NW-38 Cells、SW 1990 Cells
    CV-1 Cells;背景说明:CV-1细胞株是1964年由JensenFC等建系的,源自成年雄性非洲绿猴肾,被用于Rous肉瘤病毒的转染研究。可作为SV40载体的转染宿主。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:CCD 1112SK Cells、HCPEpiC Cells、WiDrTC Cells
    TE-14 Cells;背景说明:详见相关文献介绍;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:A-20 Cells、C33A Cells、HEC1A Cells
    PC9 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:CNE1 Cells、HME-1 Cells、SU-DHL-6 Cells
    NCI-H2087 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代;每周换液2次。;生长特性:悬浮生长,有少数细胞疏松贴壁;形态特性:上皮样;相关产品有:SW962 Cells、2B4 Cells、KYSE30 Cells
    SVEC 4-10 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:H-711 Cells、RMG-1 Cells、GLC-82 Cells
    WM-266-4 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:CCD-966SK Cells、T-HSC Cells、MCF-7/ADR-RES Cells
    2EF Cells(拥有STR基因鉴定图谱)
    Abcam HeLa SNAI1 KO Cells(拥有STR基因鉴定图谱)
    AGC-78 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line RRI443 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line XH952 Cells(拥有STR基因鉴定图谱)
    C2149 Cells(拥有STR基因鉴定图谱)
    DA00150 Cells(拥有STR基因鉴定图谱)
    Demel Cells(拥有STR基因鉴定图谱)
    SK-ChA1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Sc-1 Cells、BetaTC6 Cells、SCaBER Cells
    LX-2 Cells;背景说明:详见相关文献介绍;传代方法:1:3传代,2-3天换液一次;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:MDA-MB-435S Cells、OVCA433_Bast Cells、GM04678 Cells
    NAMALWA人Burkitt's淋巴瘤传代细胞长期复苏|送STR图谱
    SNU-484 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:T.T Cells、KTC-1 Cells、EBNA293 Cells
    NP-69 Cells;背景说明:鼻咽;上皮细胞;SV40转化;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:H-4-II-E Cells、Huh7.5 Cells、NCIH1105 Cells
    NCI-H2023 Cells;背景说明:详见相关文献介绍;传代方法:每周换液2次;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:G-292 Cells、Stanford University-Diffuse Histiocytic Lymphoma-5 Cells、HOS (TE85) Cells
    SK-MEL 28 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:8传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:星形的;相关产品有:NS1-Ag4 Cells、OSC19 Cells、IHC-ST1 Cells
    RWPE-2 Cells;背景说明:详见相关文献介绍;传代方法:1:3传代,2-3天传一代。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:C 643 Cells、SF-539 Cells、NT2D1 Cells
    SNU-449 Cells;背景说明:详见相关文献介绍;传代方法:1:5-1:10传代;每周2-3次;生长特性:贴壁生长;形态特性:上皮样;多角形;相关产品有:NCI-H2347 Cells、PE/CA-PJ34 (clone C12) Cells、TPC1 Cells
    4E2 [Mouse hybridoma against goose parvovirus VP3] Cells(拥有STR基因鉴定图谱)
    MC-4 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SUIT2 Cells、PTK-2 Cells、CAL-85-1 Cells
    OAC-P4C Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Hut292 Cells、Karpas 422 Cells、AG06814-M Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    MDAMB134 Cells;背景说明:该细胞1973年由R. Cailleau建系,源自74岁乳腺导管癌女性患者的胸腔积液,细胞生长缓慢,松散贴壁,生长过程中会脱落到培养基,不会汇合,过表达FGF受体;传代方法:1:2—1:4传代,每周换液2—3次;生长特性:松散贴壁生长;形态特性:上皮细胞样;相关产品有:HIT.T15 Cells、Panc-10.05 Cells、Nittby-Salford 1 Cells
    HEL92.1.7 Cells;背景说明:详见相关文献介绍;传代方法:每周2-3次。;生长特性:悬浮生长;形态特性:成淋巴细胞;相关产品有:MLMEC Cells、MDA157 Cells、GM05372 Cells
    Menschliche Und Tierische Zellkulture-1 Cells;背景说明:骨髓增生异常综合征;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:NCIH1838 Cells、H157 Cells、SK 1 Cells
    Baby Hamster Kidney-21 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代,每周换液1-2次。;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:UMC-11 Cells、SW527 Cells、HCC4006 Cells
    K7M2 Cells;背景说明:骨肉瘤;肺转移;雌性;BALB/c;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:GM03569D Cells、Pro-Lec1.3C Cells、NCI-H1092 Cells
    NCI-H64 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HepaRG Cells、D-324 Med Cells、McA-RH7777 Cells
    GM21215 Cells(拥有STR基因鉴定图谱)
    HAP1 LYPLA1 (-) 1 Cells(拥有STR基因鉴定图谱)
    Raji Cells;背景说明:Raji细胞由PulvertaftRJV于1963年从一位11岁黑人男孩的左上颌骨的Burkitt淋巴瘤中分离建立的,是第一个人类造血系统的连续传代细胞,为B细胞起源。该细胞中含有EBV,需要在二级生物安全柜中操作;可作转染宿主。;传代方法:维持细胞浓度在4×105/ml-3×106/ml;根据细胞浓度每2-3天补液1次。;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:VAESBJ Cells、Hs737T Cells、HGC-27 Cells
    SNUC2B Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:PaTu 8988 S Cells、H-727 Cells、C-28/I2 Cells
    BT-474 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:T-47-D Cells、Ly10 Cells、BC-028 Cells
    SNU-620 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:DoHH2 Cells、NPC-TW01 Cells、NCIH1435 Cells
    MDA-MB436 Cells;背景说明:该细胞源于一名43岁患有乳腺腺癌女性的胸腔积液。;传代方法:1:2传代,每周换液2—3次;生长特性:贴壁生长;形态特性:多角形;相关产品有:LA-795 Cells、X63Ag8.653 Cells、Colon 38 Cells
    KM932 Cells;背景说明:B淋巴细胞;EBV转化;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:T-24 Cells、Caco-2 Cells、HRC-99 Cells
    ARPE-19 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:CoCL3 Cells、TMK-1 Cells、MDA 1386 Cells
    NCIH1155 Cells;背景说明:详见相关文献介绍;传代方法:每周换液2-3次。;生长特性:悬浮生长;形态特性:上皮细胞;相关产品有:LS 1034 Cells、IEC18 Cells、Opossum Kidney Cells
    HPSI0416i-mefc_2 Cells(拥有STR基因鉴定图谱)
    K6.1 Cells(拥有STR基因鉴定图谱)
    Mel Ksen Cells(拥有STR基因鉴定图谱)
    NH50244 Cells(拥有STR基因鉴定图谱)
    R1-hiPSC13 Cells(拥有STR基因鉴定图谱)
    Ubigene A-549 CTSL KO Cells(拥有STR基因鉴定图谱)
    UOK257 Cells(拥有STR基因鉴定图谱)
    HG02087 Cells(拥有STR基因鉴定图谱)
    Natural Killer-92 Cells;背景说明:NK细胞;淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:BrCL15 Cells、BEL7405 Cells、H-865 Cells
    NBL-12 Cells;背景说明:肺;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:PT-K75 Cells、GM-637 Cells、WI 38 Cells
    NALM-6 Cells;背景说明:急性B淋巴细胞白血病;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:RCCJF Cells、NIH:OVCAR3 Cells、MCF.7 Cells
    HTR8 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:JHH2 Cells、Farage OL Cells、HDQP1 Cells
    LNCaP clone FGC Cells;背景说明:人前列腺癌细胞LNCaP克隆FGC是从一位50岁白人男性(血型B+)的左锁骨淋巴结针刺活检中分离,该患者经确诊为前列腺癌转移。 这株细胞对5-α-二睾酮(生长调节子和酸性脂酶产物)有响应。这株细胞并不形成一致的单层,而是形成集落,在传代时可以用滴管反复吹吸打碎。它们仅仅轻轻地吸附在基底上,不形成汇合,很快使培养基变酸。生长很慢。传代后48小时内不应扰动。当培养瓶封包后,多数细胞从培养瓶底分离,悬浮在培养基中。收到后,在通常培养单层细胞的条件下培养24到48小时,以合细胞再贴壁。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:Centre Antoine Lacassagne-51 Cells、H2330 Cells、JKT-1 Cells
    210RCY3-Ag1.2.3 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:C32 [Human melanoma] Cells、QSG-7701 Cells、NCIH650 Cells
    KYSE-30 Cells;背景说明:来源于一位64岁,患有高分化的中段食管鳞癌的男性患者。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:95-D Cells、NCTC929 Cells、3T3 L1 Cells
    M-NFS-60 Cells;背景说明:详见相关文献介绍;传代方法:1:3传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:ACC-2 Cells、EOL1 Cells、Caco-2 BBe Cells
    H322T Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:H676B Cells、MV-522 Cells、U138MG Cells
    GM3569 Cells;背景说明:该细胞是由绵羊红细胞免疫的BALB/c小鼠脾细胞和P3X63Ag8骨髓瘤细胞融合得到的。该细胞不分泌免疫球蛋白,对20μg/ml的8-氮鸟嘌呤有抗性,对HAT比较敏感;该细胞可以作为细胞融合时的B细胞组分用于制备杂交瘤;鼠痘病毒阴性。;传代方法:1:2传代;生长特性:悬浮生长;形态特性:淋巴母细胞样;圆形;相关产品有:P3.NS-1/1.Ag4.1 Cells、MDA-MB361 Cells、KNS-81 Cells
    201T Cells;背景说明:肺腺癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Fetal Bovine Heart Endothelial Cells、KALS-1 Cells、MDBK (NBL-1) Cells
    2008 Cells;背景说明:宫颈鳞癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:T241 Cells、1301 Cells、SK-Col-1 Cells
    KNS-81 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:H-1876 Cells、RS1 Cells、BRL 3A Cells
    NAMALWA人Burkitt's淋巴瘤传代细胞长期复苏|送STR图谱
    PCI-SG231 Cells;背景说明:肝内胆管癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HT1376 Cells、DU-145 Cells、DF1 Cells
    HOS (TE85) Cells;背景说明:骨肉瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:H4-IIE-C3 Cells、HT-1080 Cells、PANC-08-13 Cells
    SRD-2 Cells(拥有STR基因鉴定图谱)
    T-47D Cells;背景说明:浸润性导管癌;胸腔积液转移;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:149 PT Cells、HT115 Cells、BCaP-37 Cells
    EU-3 Cells;背景说明:B淋巴细胞白血病;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:PANC0203 Cells、Vero 76 Cells、DHL-5 Cells
    RPMI1788 Cells;背景说明:B淋巴细胞;EBV转化;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:NCI-H1436 Cells、UM-UC14 Cells、NCI-H1436 Cells
    MHCC-LM3 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:C-28I2 Cells、JROECL19 Cells、Hs934T Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    Central Adrenergic TH-expressing a Cells;背景说明:神经;SV40转化;C57BL/6 x DBA/2;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MPC-11 Cells、H-128 Cells、LAPC4 Cells
    NPC-039 Cells;背景说明:鼻咽癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MCF 7B Cells、PE/CA-PJ-34 Cells、Sp2/O-Ag14 Cells
    NCI-H1341 Cells;背景说明:详见相关文献介绍;传代方法:3-4天换液1次。;生长特性:悬浮生长;形态特性:圆形细胞;相关产品有:SNU-407 Cells、Case 3 Cells、Dysplastic Oral Keratinocyte Cells
    SR786 Cells;背景说明:间变性大细胞淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:NOR-10 Cells、NCIH1944 Cells、639-V Cells
    BT-474 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:T-47-D Cells、Ly10 Cells、BC-028 Cells
    DI-TNC1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维母细胞样;相关产品有:SN12CPM6 Cells、AA-Mel Cells、HKBML Cells
    Clone Y1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:COR-L23/P Cells、RIN-m Cells、HT22 Cells
    Clone Y1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:COR-L23/P Cells、RIN-m Cells、HT22 Cells
    PC-3M-2B4 Cells;背景说明:前列腺癌;骨转移;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:DAKIKI Clone 1 Cells、Colo-201 Cells、SUM159PT Cells
    Hs839.T Cells;背景说明:详见相关文献介绍;传代方法:1:2传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:SUM 102PT Cells、Plaepi 34 Cells、HCA-7 Cells
    BayGenomics ES cell line LST045 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line XC288 Cells(拥有STR基因鉴定图谱)
    CPTC-CD70-2 Cells(拥有STR基因鉴定图谱)
    MANSMA21-1F1 Cells(拥有STR基因鉴定图谱)
    SC-1 [Mouse] Cells(拥有STR基因鉴定图谱)
    HP-2 Cells(拥有STR基因鉴定图谱)
    "    "PubMed=170370; DOI=10.1099/0022-1317-28-2-207
    Adams A., Strander H., Cantell K.
    Sensitivity of the Epstein-Barr virus transformed human lymphoid cell lines to interferon.
    J. Gen. Virol. 28:207-217(1975)

    PubMed=216485
    Higgins N.P., Strauss B.S.
    Differences in the ability of human lymphoblastoid lines to exclude bromodeoxyuridine and in their sensitivity to methyl methanesulfonate and to incorporated [3H]thymidine.
    Cancer Res. 39:312-320(1979)

    PubMed=464569; DOI=10.1128/AAC.15.3.420; PMCID=PMC352676
    Klein F., Ricketts R.T., Jones W.I., DeArmon I.A., Temple M.J., Zoon K.C., Bridgen P.J.
    Large-scale production and concentration of human lymphoid interferon.
    Antimicrob. Agents Chemother. 15:420-427(1979)

    PubMed=7316467; DOI=10.1111/j.1469-1809.1980.tb00953.x
    Povey S., Jeremiah S., Arthur E., Steel M., Klein G.
    Differences in genetic stability between human cell lines from patients with and without lymphoreticular malignancy.
    Ann. Hum. Genet. 44:119-133(1980)

    PubMed=6286763; DOI=10.4049/jimmunol.129.3.1336
    Benjamin D., Magrath I.T., Maguire R.T., Janus C., Todd-Kulikowsk H.D., Parsons R.G.
    Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.
    J. Immunol. 129:1336-1342(1982)

    PubMed=6811418; DOI=10.1016/S0171-2985(11)80031-8
    Spira G., Koide N., Aman P., Ber R., Klein G.
    Truncated mu chain in a Burkitt lymphoma line (P3HR-1) and its fate in various hemapoietic somatic cell hybrids.
    Immunobiology 162:199-209(1982)

    PubMed=6231253; DOI=10.1002/ijc.2910330407
    Ehlin-Henriksson B., Klein G.
    Distinction between Burkitt lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation.
    Int. J. Cancer 33:459-463(1984)

    PubMed=2580922; DOI=10.1089/jir.1985.5.65
    Feinstein S., Traub A., Lazar A., Mizrahi A., Teitz Y.
    Studies on cell binding and internalization of human lymphoblastoid (Namalva) interferon.
    J. Interferon Res. 5:65-76(1985)

    PubMed=2985879; DOI=10.1016/0145-2126(85)90084-0
    Drexler H.G., Gaedicke G., Minowada J.
    Isoenzyme studies in human leukemia-lymphoma cell lines -- 1 carboxylic esterase.
    Leuk. Res. 9:209-229(1985)

    PubMed=2995175
    Wurm F.M., Polastri G.D., Hilfenhaus J., Harth H., Zankl H.
    Long term cultivation of Namalva cells for interferon production: stable cytogenetic markers for identification of cells in spite of drastic chromosomal variation.
    Dev. Biol. Stand. 60:393-403(1985)

    PubMed=2998993
    Steel C.M., Morten J.E.N., Foster E.
    The cytogenetics of human B lymphoid malignancy: studies in Burkitt's lymphoma and Epstein-Barr virus-transformed lymphoblastoid cell lines.
    IARC Sci. Publ. 60:265-292(1985)

    PubMed=3159941; DOI=10.1016/0145-2126(85)90134-1
    Drexler H.G., Gaedicke G., Minowada J.
    Isoenzyme studies in human leukemia-lymphoma cell lines -- III Beta-hexosaminidase (E.C. 3.2.1.30).
    Leuk. Res. 9:549-559(1985)

    PubMed=3874327; DOI=10.1016/0145-2126(85)90133-x
    Drexler H.G., Gaedicke G., Minowada J.
    Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.
    Leuk. Res. 9:537-548(1985)

    PubMed=3997900; DOI=10.1016/S0092-1157(85)80024-x
    Whitaker A.M.
    The chromosomes of the Namalwa cell line.
    J. Biol. Stand. 13:173-175(1985)

    PubMed=2415623; DOI=10.4049/jimmunol.136.1.320
    Goldmacher V.S., Lambert J.M., Young A.Y., Anderson J., Tinnel N.L., Kornacki M., Ritz J., Blattler W.A.
    Expression of the common acute lymphoblastic leukemia antigen (CALLA) on the surface of individual cells of human lymphoblastoid lines.
    J. Immunol. 136:320-325(1986)

    PubMed=3080238
    Sieverts H., Alabaster O., Goldschmidts W., Magrath I.T.
    Expression of surface antigens during the cell cycle in different growth phases of American and African Burkitt's lymphoma cell lines.
    Cancer Res. 46:1182-1188(1986)

    PubMed=3100061; DOI=10.1016/0008-8749(86)90099-7
    Benjamin D., Bazar L.S., Wallace B., Jacobson R.J.
    Heterogeneity of B-cell growth factor receptor reactivity in healthy donors and in patients with chronic lymphatic leukemia: relationship to B-cell-derived lymphokines.
    Cell. Immunol. 103:394-408(1986)

    PubMed=3026973; DOI=10.1002/ijc.2910390215
    Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.
    Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.
    Int. J. Cancer 39:211-218(1987)

    PubMed=2830981; DOI=10.1016/0092-8674(88)90530-2
    Lawrence J.B., Villnave C.A., Singer R.H.
    Sensitive, high-resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma line.
    Cell 52:51-61(1988)

    PubMed=1915267; DOI=10.1002/j.1460-2075.1991.tb07837.x; PMCID=PMC452998
    Farrell P.J., Allan G.J., Shanahan F., Vousden K.H., Crook T.
    p53 is frequently mutated in Burkitt's lymphoma cell lines.
    EMBO J. 10:2879-2887(1991)

    PubMed=2052620; DOI=10.1073/pnas.88.12.5413; PMCID=PMC51883
    Gaidano G., Ballerini P., Gong J.Z., Inghirami G., Neri A., Newcomb E.W., Magrath I.T., Knowles D.M., Dalla-Favera R.
    p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia.
    Proc. Natl. Acad. Sci. U.S.A. 88:5413-5417(1991)

    PubMed=1325212; DOI=10.1182/blood.V80.5.1289.1289
    Benjamin D., Knobloch T.J., Dayton M.A.
    Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10.
    Blood 80:1289-1298(1992)

    PubMed=1339415; DOI=10.1002/ijc.2910520320
    Middleton P.G., Miller S., Ross J.A., Steel C.M., Guy K.
    Insertion of SMRV-H viral DNA at the c-myc gene locus of a BL cell line and presence in established cell lines.
    Int. J. Cancer 52:451-454(1992)

    PubMed=8344493; DOI=10.1096/fasebj.7.10.8344493
    Bhatia K.G., Goldschmidts W., Gutierrez M.I., Gaidano G., Dalla-Favera R., Magrath I.T.
    Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.
    FASEB J. 7:951-956(1993)

    PubMed=8402660
    O'Connor P.M., Jackman J., Jondle D., Bhatia K.G., Magrath I.T., Kohn K.W.
    Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines.
    Cancer Res. 53:4776-4780(1993)

    PubMed=8515068; DOI=10.4049/jimmunol.150.12.5418
    Jain V.K., Judde J.-G., Max E.E., Magrath I.T.
    Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.
    J. Immunol. 150:5418-5428(1993)

    PubMed=8176200; DOI=10.4049/jimmunol.152.10.4749
    Benjamin D., Sharma V., Knobloch T.J., Armitage R.J., Dayton M.A., Goodwin R.G.
    B cell IL-7. Human B cell lines constitutively secrete IL-7 and express IL-7 receptors.
    J. Immunol. 152:4749-4757(1994)

    PubMed=7849311; DOI=10.1182/blood.V85.4.893.bloodjournal854893
    Stranks G., Height S.E., Mitchell P., Jadayel D.M., Yuille M.A.R., De Lord C.F.M., Clutterbuck R.D., Treleaven J.G., Powles R.L., Nacheva E., Oscier D.G., Karpas A., Lenoir G.M., Smith S.D., Millar J.L., Catovsky D., Dyer M.J.S.
    Deletions and rearrangement of CDKN2 in lymphoid malignancy.
    Blood 85:893-901(1995)

    DOI=10.11418/jtca1981.15.4_211
    Matsuo Y., Okochi A., Ariyasu T., Iimura E., Ohno T.
    Identification of cell lines with variable numbers of tandem repeat (VNTR) amplified by polymerase chain reaction.
    Tissue Cult. Res. Commun. 15:211-219(1996)

    PubMed=8558920
    Dirks W.G., Zaborski M., Jager K., Challier C., Shiota M., Quentmeier H., Drexler H.G.
    The (2;5)(p23;q35) translocation in cell lines derived from malignant lymphomas: absence of t(2;5) in Hodgkin-analogous cell lines.
    Leukemia 10:142-149(1996)

    PubMed=8568269; DOI=10.4049/jimmunol.156.4.1626
    Benjamin D., Sharma V., Kubin M., Klein J.L., Sartori A., Holliday J., Trinchieri G.
    IL-12 expression in AIDS-related lymphoma B cell lines.
    J. Immunol. 156:1626-1637(1996)

    PubMed=9192833
    Cherney B.W., Bhatia K.G., Sgadari C., Gutierrez M.I., Mostowski H.S., Pike S.E., Gupta G., Magrath I.T., Tosato G.
    Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.
    Cancer Res. 57:2508-2515(1997)

    PubMed=9473234; DOI=10.1182/blood.V91.5.1680
    Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.
    p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.
    Blood 91:1680-1687(1998)

    PubMed=9973220
    Gutierrez M.I., Cherney B.W., Hussain A., Mostowski H.S., Tosato G., Magrath I.T., Bhatia K.G.
    Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.
    Cancer Res. 59:696-703(1999)

    PubMed=10739008; DOI=10.1016/S0145-2126(99)00182-4
    Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
    Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.
    Leuk. Res. 24:255-262(2000)

    PubMed=11226526; DOI=10.1016/S0145-2126(00)00121-1
    Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
    Corrigendum to: Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines Leukemia Research 24 (2000), 255-262.
    Leuk. Res. 25:275-278(2001)

    PubMed=12145705; DOI=10.1038/sj.leu.2402519
    Langerak A.W., Moreau E.J., van Gastel-Mol E.J., van der Burg M., van Dongen J.J.M.
    Detection of clonal EBV episomes in lymphoproliferations as a diagnostic tool.
    Leukemia 16:1572-1573(2002)

    PubMed=16960149; DOI=10.1182/blood-2006-06-026500
    Mestre-Escorihuela C., Rubio-Moscardo F., Richter J.A., Siebert R., Climent J., Fresquet V., Beltran E., Agirre X., Marugan I., Marin M., Rosenwald A., Sugimoto K.-j., Wheat L.M., Karran E.L., Garcia J.F., Sanchez-Verde L., Prosper F., Staudt L.M., Pinkel D., Dyer M.J.S., Martinez-Climent J.A.
    Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas.
    Blood 109:271-280(2007)

    PubMed=18357372; DOI=10.3892/or.19.4.889
    Pop I., Pop L., Vitetta E.S., Ghetie M.-A.
    Generation of multidrug resistant lymphoma cell lines stably expressing P-glycoprotein.
    Oncol. Rep. 19:889-895(2008)

    PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
    Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
    A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
    Cancer Res. 70:2158-2164(2010)

    PubMed=20454443; DOI=10.1155/2010/904767; PMCID=PMC2861168
    Uphoff C.C., Denkmann S.A., Steube K.G., Drexler H.G.
    Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in human and other primate cell lines.
    J. Biomed. Biotechnol. 2010:904767.1-904767.23(2010)

    PubMed=21269460; DOI=10.1186/1752-0509-5-17; PMCID=PMC3039570
    Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Burckstummer T., Bennett K.L., Superti-Furga G., Colinge J.
    Initial characterization of the human central proteome.
    BMC Syst. Biol. 5:17.1-17.13(2011)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=22885699; DOI=10.1038/nature11378; PMCID=PMC3609867
    Schmitz R., Young R.M., Ceribelli M., Jhavar S., Xiao W.-M., Zhang M.-L., Wright G., Shaffer A.L. 3rd, Hodson D.J., Buras E., Liu X.-L., Powell J.I., Yang Y.-D., Xu W.-H., Zhao H., Kohlhammer H., Rosenwald A., Kluin P.M., Muller-Hermelink H.-K., Ott G., Gascoyne R.D., Connors J.M., Rimsza L.M., Campo E., Jaffe E.S., Delabie J., Smeland E.B., Ogwang M.D., Reynolds S.J., Fisher R.I., Braziel R.M., Tubbs R.R., Cook J.R., Weisenburger D.D., Chan W.-C., Pittaluga S., Wilson W., Waldmann T.A., Rowe M., Mbulaiteye S.M., Rickinson A.B., Staudt L.M.
    Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.
    Nature 490:116-120(2012)

    PubMed=24590883; DOI=10.1002/gcc.22161
    Murga Penas E.-M., Schilling G., Behrmann P., Klokow M., Vettorazzi E., Bokemeyer C., Dierlamm J.
    Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples.
    Genes Chromosomes Cancer 53:497-515(2014)

    PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
    Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
    A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
    OncoImmunology 3:e954893.1-e954893.12(2014)

    PubMed=25355872; DOI=10.1128/JVI.02570-14; PMCID=PMC4301145
    Cao S.-B., Strong M.J., Wang X., Moss W.N., Concha M., Lin Z., O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.
    High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.
    J. Virol. 89:713-729(2015)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
    Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
    A landscape of pharmacogenomic interactions in cancer.
    Cell 166:740-754(2016)

    PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
    Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
    Characterization of human cancer cell lines by reverse-phase protein arrays.
    Cancer Cell 31:225-239(2017)

    PubMed=29892436; DOI=10.1098/rsos.172472; PMCID=PMC5990783
    Shioda S., Kasai F., Watanabe K., Kawakami K., Ohtani A., Iemura M., Ozawa M., Arakawa A., Hirayama N., Kawaguchi E., Tano T., Miyata S., Satoh M., Shimizu N., Kohara A.
    Screening for 15 pathogenic viruses in human cell lines registered at the JCRB Cell Bank: characterization of in vitro human cells by viral infection.
    R. Soc. Open Sci. 5:172472-172472(2018)

    PubMed=30285677; DOI=10.1186/s12885-018-4840-5; PMCID=PMC6167786
    Tan K.-T., Ding L.-W., Sun Q.-Y., Lao Z.-T., Chien W., Ren X., Xiao J.-F., Loh X.-Y., Xu L., Lill M., Mayakonda A., Lin D.-C., Yang H.H., Koeffler H.P.
    Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.
    BMC Cancer 18:940.1-940.13(2018)

    PubMed=30629668; DOI=10.1371/journal.pone.0210404; PMCID=PMC6328144
    Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.
    Screening human cell lines for viral infections applying RNA-Seq data analysis.
    PLoS ONE 14:E0210404-E0210404(2019)"

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献
    "PubMed=170370; DOI=10.1099/0022-1317-28-2-207
    Adams A., Strander H., Cantell K.
    Sensitivity of the Epstein-Barr virus transformed human lymphoid cell lines to interferon.
    J. Gen. Virol. 28:207-217(1975)

    PubMed=216485
    Higgins N.P., Strauss B.S.
    Differences in the ability of human lymphoblastoid lines to exclude bromodeoxyuridine and in their sensitivity to methyl methanesulfonate and to incorporated [3H]thymidine.
    Cancer Res. 39:312-320(1979)

    PubMed=464569; DOI=10.1128/AAC.15.3.420; PMCID=PMC352676
    Klein F., Ricketts R.T., Jones W.I., DeArmon I.A., Temple M.J., Zoon K.C., Bridgen P.J.
    Large-scale production and concentration of human lymphoid interferon.
    Antimicrob. Agents Chemother. 15:420-427(1979)

    PubMed=7316467; DOI=10.1111/j.1469-1809.1980.tb00953.x
    Povey S., Jeremiah S., Arthur E., Steel M., Klein G.
    Differences in genetic stability between human cell lines from patients with and without lymphoreticular malignancy.
    Ann. Hum. Genet. 44:119-133(1980)

    PubMed=6286763; DOI=10.4049/jimmunol.129.3.1336
    Benjamin D., Magrath I.T., Maguire R.T., Janus C., Todd-Kulikowsk H.D., Parsons R.G.
    Immunoglobulin secretion by cell lines derived from African and American undifferentiated lymphomas of Burkitt's and non-Burkitt's type.
    J. Immunol. 129:1336-1342(1982)

    PubMed=6811418; DOI=10.1016/S0171-2985(11)80031-8
    Spira G., Koide N., Aman P., Ber R., Klein G.
    Truncated mu chain in a Burkitt lymphoma line (P3HR-1) and its fate in various hemapoietic somatic cell hybrids.
    Immunobiology 162:199-209(1982)

    PubMed=6231253; DOI=10.1002/ijc.2910330407
    Ehlin-Henriksson B., Klein G.
    Distinction between Burkitt lymphoma subgroups by monoclonal antibodies: relationships between antigen expression and type of chromosomal translocation.
    Int. J. Cancer 33:459-463(1984)

    PubMed=2580922; DOI=10.1089/jir.1985.5.65
    Feinstein S., Traub A., Lazar A., Mizrahi A., Teitz Y.
    Studies on cell binding and internalization of human lymphoblastoid (Namalva) interferon.
    J. Interferon Res. 5:65-76(1985)

    PubMed=2985879; DOI=10.1016/0145-2126(85)90084-0
    Drexler H.G., Gaedicke G., Minowada J.
    Isoenzyme studies in human leukemia-lymphoma cell lines -- 1 carboxylic esterase.
    Leuk. Res. 9:209-229(1985)

    PubMed=2995175
    Wurm F.M., Polastri G.D., Hilfenhaus J., Harth H., Zankl H.
    Long term cultivation of Namalva cells for interferon production: stable cytogenetic markers for identification of cells in spite of drastic chromosomal variation.
    Dev. Biol. Stand. 60:393-403(1985)

    PubMed=2998993
    Steel C.M., Morten J.E.N., Foster E.
    The cytogenetics of human B lymphoid malignancy: studies in Burkitt's lymphoma and Epstein-Barr virus-transformed lymphoblastoid cell lines.
    IARC Sci. Publ. 60:265-292(1985)

    PubMed=3159941; DOI=10.1016/0145-2126(85)90134-1
    Drexler H.G., Gaedicke G., Minowada J.
    Isoenzyme studies in human leukemia-lymphoma cell lines -- III Beta-hexosaminidase (E.C. 3.2.1.30).
    Leuk. Res. 9:549-559(1985)

    PubMed=3874327; DOI=10.1016/0145-2126(85)90133-x
    Drexler H.G., Gaedicke G., Minowada J.
    Isoenzyme studies in human leukemia-lymphoma cells lines -- II. Acid phosphatase.
    Leuk. Res. 9:537-548(1985)

    PubMed=3997900; DOI=10.1016/S0092-1157(85)80024-x
    Whitaker A.M.
    The chromosomes of the Namalwa cell line.
    J. Biol. Stand. 13:173-175(1985)

    PubMed=2415623; DOI=10.4049/jimmunol.136.1.320
    Goldmacher V.S., Lambert J.M., Young A.Y., Anderson J., Tinnel N.L., Kornacki M., Ritz J., Blattler W.A.
    Expression of the common acute lymphoblastic leukemia antigen (CALLA) on the surface of individual cells of human lymphoblastoid lines.
    J. Immunol. 136:320-325(1986)

    PubMed=3080238
    Sieverts H., Alabaster O., Goldschmidts W., Magrath I.T.
    Expression of surface antigens during the cell cycle in different growth phases of American and African Burkitt's lymphoma cell lines.
    Cancer Res. 46:1182-1188(1986)

    PubMed=3100061; DOI=10.1016/0008-8749(86)90099-7
    Benjamin D., Bazar L.S., Wallace B., Jacobson R.J.
    Heterogeneity of B-cell growth factor receptor reactivity in healthy donors and in patients with chronic lymphatic leukemia: relationship to B-cell-derived lymphokines.
    Cell. Immunol. 103:394-408(1986)

    PubMed=3026973; DOI=10.1002/ijc.2910390215
    Ehlin-Henriksson B., Manneborg-Sandlund A., Klein G.
    Expression of B-cell-specific markers in different Burkitt lymphoma subgroups.
    Int. J. Cancer 39:211-218(1987)

    PubMed=2830981; DOI=10.1016/0092-8674(88)90530-2
    Lawrence J.B., Villnave C.A., Singer R.H.
    Sensitive, high-resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma line.
    Cell 52:51-61(1988)

    PubMed=1915267; DOI=10.1002/j.1460-2075.1991.tb07837.x; PMCID=PMC452998
    Farrell P.J., Allan G.J., Shanahan F., Vousden K.H., Crook T.
    p53 is frequently mutated in Burkitt's lymphoma cell lines.
    EMBO J. 10:2879-2887(1991)

    PubMed=2052620; DOI=10.1073/pnas.88.12.5413; PMCID=PMC51883
    Gaidano G., Ballerini P., Gong J.Z., Inghirami G., Neri A., Newcomb E.W., Magrath I.T., Knowles D.M., Dalla-Favera R.
    p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia.
    Proc. Natl. Acad. Sci. U.S.A. 88:5413-5417(1991)

    PubMed=1325212; DOI=10.1182/blood.V80.5.1289.1289
    Benjamin D., Knobloch T.J., Dayton M.A.
    Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt's lymphoma constitutively secrete large quantities of interleukin-10.
    Blood 80:1289-1298(1992)

    PubMed=1339415; DOI=10.1002/ijc.2910520320
    Middleton P.G., Miller S., Ross J.A., Steel C.M., Guy K.
    Insertion of SMRV-H viral DNA at the c-myc gene locus of a BL cell line and presence in established cell lines.
    Int. J. Cancer 52:451-454(1992)

    PubMed=8344493; DOI=10.1096/fasebj.7.10.8344493
    Bhatia K.G., Goldschmidts W., Gutierrez M.I., Gaidano G., Dalla-Favera R., Magrath I.T.
    Hemi- or homozygosity: a requirement for some but not other p53 mutant proteins to accumulate and exert a pathogenetic effect.
    FASEB J. 7:951-956(1993)

    PubMed=8402660
    O'Connor P.M., Jackman J., Jondle D., Bhatia K.G., Magrath I.T., Kohn K.W.
    Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt's lymphoma cell lines.
    Cancer Res. 53:4776-4780(1993)

    PubMed=8515068; DOI=10.4049/jimmunol.150.12.5418
    Jain V.K., Judde J.-G., Max E.E., Magrath I.T.
    Variable IgH chain enhancer activity in Burkitt's lymphomas suggests an additional, direct mechanism of c-myc deregulation.
    J. Immunol. 150:5418-5428(1993)

    PubMed=8176200; DOI=10.4049/jimmunol.152.10.4749
    Benjamin D., Sharma V., Knobloch T.J., Armitage R.J., Dayton M.A., Goodwin R.G.
    B cell IL-7. Human B cell lines constitutively secrete IL-7 and express IL-7 receptors.
    J. Immunol. 152:4749-4757(1994)

    PubMed=7849311; DOI=10.1182/blood.V85.4.893.bloodjournal854893
    Stranks G., Height S.E., Mitchell P., Jadayel D.M., Yuille M.A.R., De Lord C.F.M., Clutterbuck R.D., Treleaven J.G., Powles R.L., Nacheva E., Oscier D.G., Karpas A., Lenoir G.M., Smith S.D., Millar J.L., Catovsky D., Dyer M.J.S.
    Deletions and rearrangement of CDKN2 in lymphoid malignancy.
    Blood 85:893-901(1995)

    DOI=10.11418/jtca1981.15.4_211
    Matsuo Y., Okochi A., Ariyasu T., Iimura E., Ohno T.
    Identification of cell lines with variable numbers of tandem repeat (VNTR) amplified by polymerase chain reaction.
    Tissue Cult. Res. Commun. 15:211-219(1996)

    PubMed=8558920
    Dirks W.G., Zaborski M., Jager K., Challier C., Shiota M., Quentmeier H., Drexler H.G.
    The (2;5)(p23;q35) translocation in cell lines derived from malignant lymphomas: absence of t(2;5) in Hodgkin-analogous cell lines.
    Leukemia 10:142-149(1996)

    PubMed=8568269; DOI=10.4049/jimmunol.156.4.1626
    Benjamin D., Sharma V., Kubin M., Klein J.L., Sartori A., Holliday J., Trinchieri G.
    IL-12 expression in AIDS-related lymphoma B cell lines.
    J. Immunol. 156:1626-1637(1996)

    PubMed=9192833
    Cherney B.W., Bhatia K.G., Sgadari C., Gutierrez M.I., Mostowski H.S., Pike S.E., Gupta G., Magrath I.T., Tosato G.
    Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells.
    Cancer Res. 57:2508-2515(1997)

    PubMed=9473234; DOI=10.1182/blood.V91.5.1680
    Klangby U., Okan I., Magnusson K.P., Wendland M., Lind P., Wiman K.G.
    p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt's lymphoma.
    Blood 91:1680-1687(1998)

    PubMed=9973220
    Gutierrez M.I., Cherney B.W., Hussain A., Mostowski H.S., Tosato G., Magrath I.T., Bhatia K.G.
    Bax is frequently compromised in Burkitt's lymphomas with irreversible resistance to Fas-induced apoptosis.
    Cancer Res. 59:696-703(1999)

    PubMed=10739008; DOI=10.1016/S0145-2126(99)00182-4
    Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
    Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines.
    Leuk. Res. 24:255-262(2000)

    PubMed=11226526; DOI=10.1016/S0145-2126(00)00121-1
    Inoue K., Kohno T., Takakura S., Hayashi Y., Mizoguchi H., Yokota J.
    Corrigendum to: Frequent microsatellite instability and BAX mutations in T cell acute lymphoblastic leukemia cell lines Leukemia Research 24 (2000), 255-262.
    Leuk. Res. 25:275-278(2001)

    PubMed=12145705; DOI=10.1038/sj.leu.2402519
    Langerak A.W., Moreau E.J., van Gastel-Mol E.J., van der Burg M., van Dongen J.J.M.
    Detection of clonal EBV episomes in lymphoproliferations as a diagnostic tool.
    Leukemia 16:1572-1573(2002)

    PubMed=16960149; DOI=10.1182/blood-2006-06-026500
    Mestre-Escorihuela C., Rubio-Moscardo F., Richter J.A., Siebert R., Climent J., Fresquet V., Beltran E., Agirre X., Marugan I., Marin M., Rosenwald A., Sugimoto K.-j., Wheat L.M., Karran E.L., Garcia J.F., Sanchez-Verde L., Prosper F., Staudt L.M., Pinkel D., Dyer M.J.S., Martinez-Climent J.A.
    Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas.
    Blood 109:271-280(2007)

    PubMed=18357372; DOI=10.3892/or.19.4.889
    Pop I., Pop L., Vitetta E.S., Ghetie M.-A.
    Generation of multidrug resistant lymphoma cell lines stably expressing P-glycoprotein.
    Oncol. Rep. 19:889-895(2008)

    PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662
    Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
    A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
    Cancer Res. 70:2158-2164(2010)

    PubMed=20454443; DOI=10.1155/2010/904767; PMCID=PMC2861168
    Uphoff C.C., Denkmann S.A., Steube K.G., Drexler H.G.
    Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in human and other primate cell lines.
    J. Biomed. Biotechnol. 2010:904767.1-904767.23(2010)

    PubMed=21269460; DOI=10.1186/1752-0509-5-17; PMCID=PMC3039570
    Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Burckstummer T., Bennett K.L., Superti-Furga G., Colinge J.
    Initial characterization of the human central proteome.
    BMC Syst. Biol. 5:17.1-17.13(2011)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=22885699; DOI=10.1038/nature11378; PMCID=PMC3609867
    Schmitz R., Young R.M., Ceribelli M., Jhavar S., Xiao W.-M., Zhang M.-L., Wright G., Shaffer A.L. 3rd, Hodson D.J., Buras E., Liu X.-L., Powell J.I., Yang Y.-D., Xu W.-H., Zhao H., Kohlhammer H., Rosenwald A., Kluin P.M., Muller-Hermelink H.-K., Ott G., Gascoyne R.D., Connors J.M., Rimsza L.M., Campo E., Jaffe E.S., Delabie J., Smeland E.B., Ogwang M.D., Reynolds S.J., Fisher R.I., Braziel R.M., Tubbs R.R., Cook J.R., Weisenburger D.D., Chan W.-C., Pittaluga S., Wilson W., Waldmann T.A., Rowe M., Mbulaiteye S.M., Rickinson A.B., Staudt L.M.
    Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics.
    Nature 490:116-120(2012)

    PubMed=24590883; DOI=10.1002/gcc.22161
    Murga Penas E.-M., Schilling G., Behrmann P., Klokow M., Vettorazzi E., Bokemeyer C., Dierlamm J.
    Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples.
    Genes Chromosomes Cancer 53:497-515(2014)

    PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
    Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
    A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
    OncoImmunology 3:e954893.1-e954893.12(2014)

    PubMed=25355872; DOI=10.1128/JVI.02570-14; PMCID=PMC4301145
    Cao S.-B., Strong M.J., Wang X., Moss W.N., Concha M., Lin Z., O'Grady T., Baddoo M., Fewell C., Renne R., Flemington E.K.
    High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project.
    J. Virol. 89:713-729(2015)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
    Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
    A landscape of pharmacogenomic interactions in cancer.
    Cell 166:740-754(2016)

    PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
    Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
    Characterization of human cancer cell lines by reverse-phase protein arrays.
    Cancer Cell 31:225-239(2017)

    PubMed=29892436; DOI=10.1098/rsos.172472; PMCID=PMC5990783
    Shioda S., Kasai F., Watanabe K., Kawakami K., Ohtani A., Iemura M., Ozawa M., Arakawa A., Hirayama N., Kawaguchi E., Tano T., Miyata S., Satoh M., Shimizu N., Kohara A.
    Screening for 15 pathogenic viruses in human cell lines registered at the JCRB Cell Bank: characterization of in vitro human cells by viral infection.
    R. Soc. Open Sci. 5:172472-172472(2018)

    PubMed=30285677; DOI=10.1186/s12885-018-4840-5; PMCID=PMC6167786
    Tan K.-T., Ding L.-W., Sun Q.-Y., Lao Z.-T., Chien W., Ren X., Xiao J.-F., Loh X.-Y., Xu L., Lill M., Mayakonda A., Lin D.-C., Yang H.H., Koeffler H.P.
    Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.
    BMC Cancer 18:940.1-940.13(2018)

    PubMed=30629668; DOI=10.1371/journal.pone.0210404; PMCID=PMC6328144
    Uphoff C.C., Pommerenke C., Denkmann S.A., Drexler H.G.
    Screening human cell lines for viral infections applying RNA-Seq data analysis.
    PLoS ONE 14:E0210404-E0210404(2019)"
    图标技术资料

    需要更多技术资料 索取更多技术资料

    资料下载:

    产品(54).jpg 附 (下载 0 次)

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥850
    上海冠导生物工程有限公司
    2025年07月15日询价
    询价
    上海哈灵生物科技有限公司
    2025年07月07日询价
    询价
    上海研生实业有限公司
    2025年07月13日询价
    ¥800
    上海抚生实业有限公司
    2025年07月03日询价
    ¥1680
    上海沪震实业有限公司
    2025年03月19日询价
    文献支持
    NAMALWA人Burkitt's淋巴瘤传代细胞长期复苏|送STR图谱
    ¥850 - 2150