产品封面图
文献支持

RKO人结肠腺癌传代细胞种子库|送STR图谱

收藏
  • ¥850 - 2150
  • 冠导生物
  • RKO人结肠腺癌传代细胞种子库|送STR图谱
  • 美国、德国、欧洲等
  • 2025年07月13日
    avatar
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 文献和实验
    • 技术资料
    • 品系

      详见细胞说明资料

    • 细胞类型

      详见细胞说明资料

    • 肿瘤类型

      详见细胞说明资料

    • 供应商

      上海冠导生物工程有限公司

    • 库存

      ≥100瓶

    • 生长状态

      详见细胞说明资料

    • 年限

      详见细胞说明资料

    • 运输方式

      常温运输【复苏细胞】或干冰运输【冻存细胞】

    • 器官来源

      详见细胞说明资料

    • 是否是肿瘤细胞

      详见细胞说明资料

    • 细胞形态

      详见细胞说明资料

    • 免疫类型

      详见细胞说明资料

    • 物种来源

      详见细胞说明资料

    • 相关疾病

      详见细胞说明资料

    • 组织来源

      详见细胞说明资料

    • 英文名

      RKO人结肠腺癌传代细胞种子库|送STR图谱

    • 规格

      1*10(6)Cellls/瓶

    "RKO人结肠腺癌传代细胞种子库|送STR图谱
    传代方法:1:2-1:4(首次传代建议1:2)
    生长特性:贴壁生长
    换液频率:每周2-3次
    背景资料:RKO是一个低分化的结肠癌细胞系。RKO细胞含有野生型P53,但缺乏人甲状腺受体核受体(h-TRbeta1)。RKO细胞的P53蛋白的水平高于RKO-E6细胞。RKO细胞系是RKO-E6和RKO-AS45-1的亲本细胞系。该细胞系在裸鼠中成瘤,且在软琼脂中形成集落。
    细胞培养实验中常见问题总结:1)一般客户拿到细胞后,应该注意什么?客户收到细胞后先不开盖,放在培养箱静置若干小时后(看细胞密度而定)在倒置显微镜下观察细胞生长情况,并对细胞进行不同倍数拍照(建议受收细胞后观察培养基的颜色和是否有漏情况,显微镜下拍细胞100X,200X各一张),排除细胞本身污染的情况;收到细胞未开封,出现污染状况我们负责免费发送一株细胞。收到细胞时如无异常情况,请在显微镜下观察细胞密度,如为贴壁细胞,未超过80%汇合度时,将培养瓶中培养吸出,留下10ml培养继续培养;超过80%汇合度时,请按细胞培养条件传代培养。如为悬浮细胞,吸出培养、1000转/分钟离心2分钟,吸出上清,管底细胞用新鲜培养基悬浮细胞后移回培养瓶。细胞消化建议使用PBS配制,慎用Hanks配制;2)快递细胞多久能到,是寄冻存的细胞还是复苏HAO的细胞?我们采用快递发货,一般外地2--3天,寄细胞前请确认当地温度,如果气温低于4度的,则采用邮寄冻存细胞;3)可否使用与原先培养条件不同之培养基?不能。每一细胞株均有其定使用且已适应之细胞培养基,若骤然使用和原先提供之培养条件不同之培养基,细胞大都无法立即适应,造成细胞无法存活;4)可否使用与原先培养条件不同之血清种类?不能。血清是细胞培养上一个为重要的营养来源,所以血清的种类和品质对于细胞的生长会产生大的影响。来自不同物种的血清,在一些物质或分子的量或内容物上都有所不同,血清使用错误常会造成细胞无法存活。
    CCLP-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:NPC-TW-039 Cells、CORL51 Cells、A20 Cells
    SW 1116 Cells;背景说明:CSAp阴性(CSAp-)。 结肠抗原3,阴性。 角蛋白免疫过氧化物酶染色阳性。 癌基因c-myc, K-ras, H-ras, myb, sis 和fos的表达呈阳性。 未检测到癌基因N-myc和N-ras的表达。 表达肿瘤特异的核基质蛋白CC-4,CC-5和CC-6。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:WM239A Cells、PF382 Cells、MCF-12A Cells
    Transformed Human Liver Epithelial-2 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:6传代;2-3天换液1次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:OKT3 Cells、MOLM-13 Cells、RAW264 Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    RKO人结肠腺癌传代细胞种子库|送STR图谱
    产品包装形式:复苏细胞:T25培养瓶(一瓶)或冻存细胞:1ml冻存管(两支)
    来源说明:细胞主要来源ATCC、DSMZ等细胞库
    物种来源:Human\Mouse\Rat\Others
    P 815 Cells;背景说明:肥大细胞瘤;雄性;DBA/2;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:SPCA1 Cells、SNU354 Cells、EU-3 Cells
    A20.IIA Cells(拥有STR基因鉴定图谱)
    CPA 47 Cells;背景说明:肺血管;内皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HCC1954-BL Cells、CEM T4 Cells、FHL-124 Cells
    HOS TE 85 Cells;背景说明:骨肉瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:293AD Cells、LI7 Cells、MOVAS-1 Cells
    形态特性:上皮细胞样
    RKO人结肠腺癌传代细胞种子库|送STR图谱
    绝大部分细胞消化只要用胰酶润洗一遍即可:吸去胰酶后,残留的那些无法计算体积的附着在细胞表面的微量胰酶在37℃一般不到2min足够消化细胞(绝大部分1min不到)。对于这些细胞原则上不要用胰酶孵育细胞,连续这样传代,对细胞伤害很大。简单的程序是PBS润洗吸去,胰酶润洗吸去,然后37℃消化。什么算是消化好了呢?不需要把细胞全部消化成间隔分布很离散的单个圆形才算消化好了,一般你肉眼观察贴壁细胞层,只要能移动了,多半呈沙状移动,其实已经是可以了。一般能移动了,说明细胞与培养基质材料的附着已经消失了,细胞之间的附着也已经消失了,细胞已经独立分布了(虽然没有呈现很广的离散分布)。这个时候应该停止消化,不要等到看到镜下所有细胞都分离得非常好,间隙很大,才停止。细胞系在贴壁的过程中仍然会聚集,这个是贴壁培养的细胞,尤其是肿瘤细胞的一个特性,你可以尝试,准备100%的单个细胞悬液,贴壁后观察细胞,仍然是几个几个细胞聚集在一起。一些悬浮培养细胞也是如此,容易聚集,不要过几个小时就拿出来吹打成单细胞悬液。细胞只要能从基质上脱离下来,即使是成片的(比如Calu-3细胞),吹打不超过20次(一般10次即可),成小规模聚集(10个细胞左右)是正常的,不要再去延长消化时间,等待单细胞悬液出现。比较难消化的细胞:润洗方法5min还不能消化,以结肠癌细胞为例,比如:HCT15、LS411和KM12细胞,胰酶消化,一般10 cm培养皿,一次加入300ul-500ul就足够了。即使这样难消化的细胞,一般不超过5min,即可见细胞成片移动,就应该停止消化。一些正常细胞也会有难消化的时候,比如tsDC细胞,用胰酶孵育,3min左右即可看到成片沙状移动。
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    在实验室细胞培养过程中,细胞聚集是一个常见的问题,它可能会影响细胞的正常生长、实验结果的准确性等诸多方面。为了防止细胞聚集,科研人员通常会采用多种有效的方法。首先,合适的细胞培养容器表面处理至关重要。许多细胞培养瓶和培养皿会经过特殊的表面处理,例如用亲水性的聚合物涂层。减少细胞之间因为吸附在同一位置而聚集的可能性。酶处理也是常用的手段之一。在细胞消化传代过程中,使用适量的胰蛋白酶等酶试剂。胰蛋白酶能够分解细胞间的连接蛋白,使细胞彼此分离。但是,酶的浓度和处理时间需要严格把控。如果酶浓度过高或者处理时间过长,虽然细胞能够很好地分散,但可能会对细胞造成损伤,影响细胞的活性。以常见的哺乳动物细胞为例,一般使用0.25%的胰蛋白酶,在37℃下处理1-3分钟,就可以有效地将细胞分散开,同时又能保证细胞的健康状态。添加合适的试剂也是防止细胞聚集的有效策略。一些抗聚集剂如四乙酸(EDTA)被广泛使用。EDTA能够螯合细胞培养液中的钙、镁离子,而这些离子是细胞间连接所依赖的重要成分。当它们被螯合后,细胞间的连接就会变弱,从而减少聚集。在细胞培养过程中,轻柔的操作也不容忽视。无论是在细胞的接种、换液还是转移过程中,避免剧烈摇晃或吹打。通过这些综合的方法,实验室能够更好地防止细胞聚集,为细胞系培养实验的成功提供保障。
    CoC1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:D324 Cells、L540 Cells、74Int Cells
    MKN 7 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:MCAEC Cells、COR-L279 Cells、JEG-3 Cells
    U-118 MG Cells;背景说明:注意: 据报道来自不同个体的胶质母细胞瘤细胞株U-118 MG (HTB-15) 和 U-138 MG (HTB-16)有着一致的VNTR和相近的STR模式。 U-118 MG 和 U-138 MG细胞遗传学上很相似并有至少六个衍生标记染色体。 这是1966年至1969年间J. Ponten和同事从恶性神经胶质瘤中构建的细胞株中的一株(其它包括ATCC HTB-14和 ATCC HTB-16 and ATCC HTB-17)。 1987年用BM-Cycline培养6周去除了支原体污染。 ;传代方法: 消化3-5分钟。1:2传代。3天内可长满。;生长特性:贴壁生长;形态特性:混合型;相关产品有:DH82 Cells、NTHY-ORI3.1 Cells、Ontario Cancer Institute-Acute Myeloid Leukemia-3 Cells
    H1385 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:MM.1S Cells、MD Anderson-Metastatic Breast-175-VIII Cells、HeLa229 Cells
    D324 Med Cells;背景说明:详见相关文献介绍;传代方法:1:4-1:6传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:多边形;相关产品有:HFL Cells、FHCRC-11 Cells、PANC0504 Cells
    H-596 Cells;背景说明:详见相关文献介绍;传代方法:1:4-1:8传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:H-661 Cells、CAL62 Cells、Tb1Lu Cells
    SCC 15 Cells;背景说明:详见相关文献介绍;传代方法:1:4-1:8传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:VeroC1008 Cells、NCI-H522 Cells、MV4-11 Cells
    HEK 293 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:WM266 Cells、PaTu8988s Cells、LN382 Cells
    MCAEC Cells;背景说明:冠状动脉内皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:GM15452 Cells、293T Cells、McA-RH 7777 Cells
    NCI-H1299 Cells;背景说明:这株细胞来源于一个淋巴结转移。患者接受了初期放疗。细胞均一性的部分缺失p53蛋白,并缺少p53蛋白表达。细胞可以合成0.1pmol/毫克蛋白的NMB蛋白,而不合成促胃液释放肽(GRP)。;传代方法:1:2传代;3天传代一次。;生长特性:贴壁生长;形态特性:上皮样;多角形;相关产品有:COR-L23 Cells、Madison 109 Cells、C643 Cells
    AAV293 Cells;背景说明:我们推荐使用AAV-293细胞株繁殖腺病毒相关重组病毒。 AAV-293源自普遍使用的 HEK293细胞株,但产生的病毒滴度更高。 HEK293细胞是剪切过的腺病毒5型DNA转染的人胚肾细胞。 跟HEK293细胞一样,AAV-293细胞反式表达腺病毒E1基因,当共转染三个AAV助质粒(一个含ITR的质粒,pAAV-RC, 和E1缺失助质粒)时,可以产生有感染力的腺病毒-相关病毒颗粒。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:COS1 Cells、MLE12 Cells、NCIH2171 Cells
    JurkatE6-1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Walker-256-TC Cells、NR8383.1 Cells、28SC Cells
    Helacyton gartleri Cells;背景说明:HeLa是第一个来自人体组织经连续培养获得的非整倍体上皮样细胞系,它由GeyGO等在1951年从31岁女性黑人的宫颈癌组织建立。经原始组织切片重新观察,Jones等将其诊断为腺癌。已知该细胞系含有人乳头状瘤病毒HPV18序列,需在2级生物安全防护台操作。该细胞角蛋白阳性,p53表达量较低,但表达正常水平的pRB(视网膜母细胞瘤抑制因子)。;传代方法:1:3传代,2-3天换液一次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HCGC Cells、VP229 Cells、RBL.2H3 Cells
    HARA-B Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HUCCT1 Cells、MARC145 Cells、DR2R1610 Cells
    VMRC-LCD Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:M059K Cells、NBL-S Cells、NCI-H1522 Cells
    alpha TC1 clone 6 Cells;背景说明:胰岛素瘤;a细胞;C57BL/6xDBA/2;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Leukemic 1210 Cells、COLO-320-HSR Cells、H19-7 Cells
    H-2444 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:4传代;每周换液2次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:CAL85-1 Cells、PA-1 Cells、NCI-H1341 Cells
    A2780/TPT Cells(拥有STR基因鉴定图谱)
    Abcam MCF-7 XPC KO Cells(拥有STR基因鉴定图谱)
    B16-Blue IFN-alpha/beta Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line RRQ016 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line YHC286 Cells(拥有STR基因鉴定图谱)
    CEM/VLB55-8 Cells(拥有STR基因鉴定图谱)
    DA01320 Cells(拥有STR基因鉴定图谱)
    EEK Cells(拥有STR基因鉴定图谱)
    GM05496 Cells(拥有STR基因鉴定图谱)
    A549/DDP Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:NCI-H2029 Cells、SW 948 Cells、COLO320 DM Cells
    LA4 Cells;背景说明:肺癌;A/He;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:293/EBNA-1 Cells、NS1 Cells、T HEECs Cells
    COS-7 Cells;背景说明:此细胞株源自CV-1细胞株,经转染起始点缺失的SV40病毒突变体得到;编码表达野生型T抗原,所以该细胞适合作为需要SV40T抗原表达的载体的转染宿主。该细胞表达T抗原,允许SV40病毒的溶解性生长,支持40℃时温度敏感性A209病毒的复制,支持起始区域缺陷的SV40突变体的复制。因含有SV40病毒的DNA序列,该细胞需要在2级生物安全柜中操作。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:U-87MG Cells、HS-695T Cells、TE-9 Cells
    H-1755 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:NCIH2342 Cells、COLO-680N Cells、OCI-AML-3 Cells
    95D Cells;背景说明:这是一株高转移肺癌。;传代方法:消化3-5分钟,1:2,3天内可长满;生长特性:贴壁生长;形态特性:上皮样;相关产品有:OCUM-1 Cells、C4-2 Cells、NTHY-ORI3.1 Cells
    MEL Cells;背景说明:DMSO可诱导该细胞向红系分化。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:RS411 Cells、QGP1 Cells、TE 85 ClF-5 Cells
    MD Anderson-Metastatic Breast-435 Cells;背景说明:乳腺癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:LNCaP-FGC Cells、HOC-1 Cells、CMT-64 Cells
    NW-38 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Y3-Ag1.2.3 Cells、BEAS-2B Cells、Mevo Cells
    IPEC-J2 Cells;背景说明:小肠;上皮细胞;自发永生;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NT2 Cells、Det. 562 Cells、ACC-M Cells
    EAHY-926 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:TCCPAN2 Cells、RMS13 Cells、RKOAS451 Cells
    B16 F1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:JROECL33 Cells、H-1703 Cells、LC-MS Cells
    RKO人结肠腺癌传代细胞种子库|送STR图谱
    SuperTube Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:H1930 Cells、TGW-I-nu Cells、LM6 Cells
    OVCAR-420 Cells;背景说明:卵巢癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:LICR-HN-6 Cells、MDA435 Cells、SNU-216 Cells
    b.End3 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Calu 6 Cells、C1498 Cells、8305-C Cells
    PL-9 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:IOSE-29 Cells、NCIH508 Cells、NPC-039 Cells
    GM27578 Cells(拥有STR基因鉴定图谱)
    HAP1 OTUD7A (-) 1 Cells(拥有STR基因鉴定图谱)
    SNU423 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:OCILY-10 Cells、GOTO Cells、EFM192A Cells
    UPCI:SCC154 Cells;背景说明:舌鳞癌;男性;HPV6转化;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:PTK1 Cells、Lu99A Cells、HSC3 Cells
    MOVAS-1 Cells;背景说明:主动脉平滑肌;SV40转化;C57BL/6;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Human Liver-7702 Cells、NCI-H460 Cells、WM266 Cells
    KYSE 140 Cells;背景说明:食管鳞癌细胞;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:KU19-19 Cells、SG231 Cells、LC1/Sq Cells
    MUS-M1 Cells;背景说明:小肠;平滑肌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:KE-37 Cells、PCI-4M Cells、BNCL2 Cells
    P388.D1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:SKHEP1 Cells、BT 549 Cells、U-87MG ATCC Cells
    P31/Fujioka Cells;背景说明:详见相关文献介绍;传代方法:1:5传代;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:B958 Cells、SK BR 03 Cells、D562 Cells
    WM239A Cells;背景说明:黑色素瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:PC-3M-IE8 Cells、OVCAR420 Cells、TCMK1 Cells
    Hs 801.Pl Cells(拥有STR基因鉴定图谱)
    KOLF2.1J AAVS1-TREG3-NGN2 ATG12-/- Cells(拥有STR基因鉴定图谱)
    MM214 Cells(拥有STR基因鉴定图谱)
    NTUe001-A Cells(拥有STR基因鉴定图谱)
    RG-109 Cells(拥有STR基因鉴定图谱)
    Ubigene HCT 116 FOLR1 KO Cells(拥有STR基因鉴定图谱)
    W. C. Cells(拥有STR基因鉴定图谱)
    HG02575 Cells(拥有STR基因鉴定图谱)
    SW-780 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:U-251 MG Cells、Kasumi 1 Cells、ID8 Cells
    MGH-U3 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:RC-K8 Cells、AR4-2J Cells、PANC1005 Cells
    HFT-8810 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:NCI-H1155 Cells、TJ905 Cells、Capan2 Cells
    RERF-LC-MS Cells;背景说明:详见相关文献介绍;传代方法:每周换液2次。;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:NH6 Cells、H-211 Cells、RBL-I Cells
    H-1437 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:6传代,每周换液2次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:H-64 Cells、L02 Cells、PA-TU S Cells
    H-1437 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:6传代,每周换液2次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:H-64 Cells、L02 Cells、PA-TU S Cells
    MCF-7/ADR Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:CAL 62 Cells、CRFK Cells、SCC9 Cells
    A 375 Cells;背景说明:A375源自一位54岁女性,是Giard DJ等人建立的一系列细胞株中的一株。该细胞可在免疫抑制小鼠上成瘤,在琼脂上形成克隆。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:Hs 746T Cells、MCF-7/ADR Cells、451Lu Cells
    SBC5 Cells;背景说明:详见相关文献介绍;传代方法:每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:NCI-SNU-C2A Cells、KLE Cells、RD Cells
    U-251_MG Cells;背景说明:U-251 MG分离至一位患者的胶质母细胞瘤组织。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:成纤维细胞样;相关产品有:SKGT4 Cells、MDA-MB-134VI Cells、A673 Cells
    H1417 Cells;背景说明:小细胞肺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Jiyoye Cells、GM03671C Cells、GM2131 Cells
    H-1581 Cells;背景说明:详见相关文献介绍;传代方法:每周换液2次。;生长特性:混合型;形态特性:上皮样;相关产品有:NCI-H841 Cells、HLE Cells、YH Cells
    EBTr Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:RWPE2 Cells、SNU869 Cells、TSU-Pr1 Cells
    RKO人结肠腺癌传代细胞种子库|送STR图谱
    TCMK1 Cells;背景说明:肾小管;上皮细胞;SV40转化;C3H/Mai;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:CMT.64 Cells、OCI Ly1 Cells、H-23 Cells
    IM 9 Cells;背景说明:详见相关文献介绍;传代方法:1:3传代,2-3天传一代;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:3T3 J2 Cells、16HBEo- Cells、PANC 203 Cells
    STBCi208-A Cells(拥有STR基因鉴定图谱)
    NCI-ADR-RES Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Wayne State University-Head and Neck 13 Cells、RPMI1846 Cells、WEHI164 Cells
    JM-1 Cells;背景说明:详见相关文献介绍;传代方法:换液2-3次一周;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:RPMI No. 1846 Cells、Clone Y-1 Cells、H7721 Cells
    PANC1005 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:H-2198 Cells、N-87 Cells、MOLM-16 Cells
    Lu-65 Cells;背景说明:详见相关文献介绍;传代方法:1:10传代;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:LO2 Cells、NCIH661 Cells、MDAMB175 Cells
    J 111 Cells;背景说明:单核细胞白血病;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:NCI-H2030 Cells、MRMT-1 Cells、L929 Cells
    IM-95 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:A-204 Cells、AMJ2-C8 Cells、JB6 Cl 30-7b Cells
    NCIH345 Cells;背景说明:小细胞肺癌;骨髓转移;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:COLO 738 Cells、MT4 Cells、Jurkat clone A3 Cells
    LAD 2 Cells;背景说明:肥大 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:GC-1 Cells、SN4741 Cells、Hs 746T Cells
    EFM-192B Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:NCIH548 Cells、CEK Cells、Hs 578T Cells
    M-O7e Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HCE-T Cells、SK-N-BE(2)C Cells、COLO 679 Cells
    SW480E Cells;背景说明:SW480源自一位51岁白人男性患者的原位直肠腺癌,而SW620源自同一病人一年后的淋巴结转移灶。该细胞CSAp和直肠抗原3阴性;角蛋白阳性;p53基因第273位密码子的G→A突变引起Arg→His替代,309位密码子的C→T突变导致Pro→Ser替代;细胞p53蛋白表达水平升高;癌基因c-myc、K-ras、H-ras、N-ras、myb、sis和fos的表达呈阳性;未检测到癌基因N-myc的表达;不表达Matrilysin(一种与肿瘤侵袭相关的金属蛋白酶)。;传代方法:1:2传代,1-2天换液一次;生长特性:贴壁生长;形态特性:上皮样;相关产品有:MDA-361 Cells、EJ Cells、Hs 578Bst Cells
    COLO-320-HSR Cells;背景说明:该细胞1984年建系,源自一位33岁患有大肠腺癌男性经5-fu治疗后的腹水。;传代方法:1:2传代。3天内可长满。;生长特性:半贴壁生长;形态特性:详见产品说明;相关产品有:OVCA 433 Cells、H1882 Cells、WM 239-A Cells
    SNU475 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:Giant Cell Tumor Cells、NCI-H146 Cells、COLO 201 Cells
    MDA-MB-435 S Cells;背景说明:MDA-MB-435S是一种纺锤形的细胞,1976年由其亲本(435)中筛选得到。435是从31岁的转移性乳腺导管腺癌女性患者胸水中分离得到。当用荧光染料对微管蛋白进行染色时亲本细胞显现散布特征(II型)。最近通过cDNA阵列研究表明,亲本(MDA-MB-435)可归入黑素瘤起源。;传代方法:消化3-5分钟,1:2,3天内可长满;生长特性:贴壁生长;形态特性:纺锤形;相关产品有:EJ Cells、MF2059 Cells、Ku812 Cells
    BayGenomics ES cell line CSI765 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line SYA112 Cells(拥有STR基因鉴定图谱)
    CB02 Cells(拥有STR基因鉴定图谱)
    Lu6 Cells(拥有STR基因鉴定图谱)
    RAW 264.7 Sting1 KO + Sting1 (AA 1-339) Cells(拥有STR基因鉴定图谱)
    Rn4T Cells(拥有STR基因鉴定图谱)
    "

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献
    "PubMed=2253215
    Baker S.J., Preisinger A.C., Jessup J.M., Paraskeva C., Markowitz S.D., Willson J.K.V., Hamilton S.R., Vogelstein B.
    p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis.
    Cancer Res. 50:7717-7722(1990)

    PubMed=8387205; DOI=10.1073/pnas.90.9.3988; PMCID=PMC46431
    Kessis T.D., Slebos R.J.C., Nelson W.G., Kastan M.B., Plunkett B.S., Han S.M., Lorincz A.T., Hedrick L., Cho K.R.
    Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage.
    Proc. Natl. Acad. Sci. U.S.A. 90:3988-3992(1993)

    PubMed=7798274; DOI=10.1016/S0021-9258(18)31687-9
    Carrier F., Smith M.L., Bae I., Kilpatrick K.E., Lansing T.J., Chen C.-Y., Engelstein M., Friend S.H., Henner W.D., Gilmer T.M., Kastan M.B., Fornace A.J. Jr.
    Characterization of human Gadd45, a p53-regulated protein.
    J. Biol. Chem. 269:32672-32677(1994)

    PubMed=7761852; DOI=10.1126/science.7761852
    Markowitz S.D., Wang J., Myeroff L.L., Parsons R., Sun L.-Z., Lutterbaugh J.D., Fan R.S., Zborowska E., Kinzler K.W., Vogelstein B., Brattain M.G., Willson J.K.V.
    Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability.
    Science 268:1336-1338(1995)

    PubMed=7824277
    Eshleman J.R., Lang E.Z., Bowerfind G.K., Parsons R., Vogelstein B., Willson J.K.V., Veigl M.L., Sedwick W.D., Markowitz S.D.
    Increased mutation rate at the hprt locus accompanies microsatellite instability in colon cancer.
    Oncogene 10:33-37(1995)

    PubMed=9515795
    Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W.
    Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.
    Cancer Res. 58:1130-1134(1998)

    PubMed=9715273; DOI=10.1038/sj.onc.1201986
    Eshleman J.R., Casey G., Kochera M.E., Sedwick W.D., Swinler S.E., Veigl M.L., Willson J.K.V., Schwartz S., Markowitz S.D.
    Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53.
    Oncogene 17:719-725(1998)

    PubMed=11314036; DOI=10.1038/sj.onc.1204211
    Forgacs E., Wren J.D., Kamibayashi C., Kondo M., Xu X.L., Markowitz S.D., Tomlinson G.E., Muller C.Y., Gazdar A.F., Garner H.R., Minna J.D.
    Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.
    Oncogene 20:1005-1009(2001)

    PubMed=12615714
    Hempen P.M., Zhang L., Bansal R.K., Iacobuzio-Donahue C.A., Murphy K.M., Maitra A., Vogelstein B., Whitehead R.H., Markowitz S.D., Willson J.K.V., Yeo C.J., Hruban R.H., Kern S.E.
    Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers.
    Cancer Res. 63:994-999(2003)

    PubMed=16418264; DOI=10.1073/pnas.0510146103; PMCID=PMC1327731
    Liu Y., Bodmer W.F.
    Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.
    Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006)

    PubMed=16854228; DOI=10.1186/1476-4598-5-29; PMCID=PMC1550420
    Bandres Elizalde E.M., Cubedo E., Agirre X., Malumbres R., Zarate R., Ramirez N., Abajo A., Navarro A., Moreno I., Monzo M., Garcia-Foncillas J.
    Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.
    Mol. Cancer 5:29.1-29.10(2006)

    PubMed=17363507; DOI=10.1158/1535-7163.MCT-06-0555
    Wang J., Kuropatwinski K.K., Hauser J., Rossi M.R., Zhou Y.-F., Conway A., Kan J.L.C., Gibson N.W., Willson J.K.V., Cowell J.K., Brattain M.G.
    Colon carcinoma cells harboring PIK3CA mutations display resistance to growth factor deprivation induced apoptosis.
    Mol. Cancer Ther. 6:1143-1150(2007)

    PubMed=18258742; DOI=10.1073/pnas.0712176105; PMCID=PMC2268141
    Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.
    Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.
    Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008)

    PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113
    Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
    Signatures of mutation and selection in the cancer genome.
    Nature 463:893-898(2010)

    PubMed=20570890; DOI=10.1158/0008-5472.CAN-10-0192; PMCID=PMC2943514
    Janakiraman M., Vakiani E., Zeng Z.-S., Pratilas C.A., Taylor B.S., Chitale D., Halilovic E., Wilson M., Huberman K., Ricarte Filho J.C.M., Persaud Y., Levine D.A., Fagin J.A., Jhanwar S.C., Mariadason J.M., Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.
    Genomic and biological characterization of exon 4 KRAS mutations in human cancer.
    Cancer Res. 70:5901-5911(2010)

    PubMed=20606684; DOI=10.1038/sj.bjc.6605780; PMCID=PMC2920028
    Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.
    5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.
    Br. J. Cancer 103:340-346(2010)

    PubMed=22278370; DOI=10.1074/mcp.M111.014050; PMCID=PMC3316730
    Geiger T., Wehner A., Schaab C., Cox J., Mann M.
    Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.
    Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=24042735; DOI=10.1038/oncsis.2013.35; PMCID=PMC3816225
    Ahmed D., Eide P.W., Eilertsen I.A., Danielsen S.A., Eknaes M., Hektoen M., Lind G.E., Lothe R.A.
    Epigenetic and genetic features of 24 colon cancer cell lines.
    Oncogenesis 2:e71.1-e71.8(2013)

    PubMed=24618588; DOI=10.1371/journal.pone.0091433; PMCID=PMC3950186
    Chernobrovkin A.L., Zubarev R.A.
    Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.
    PLoS ONE 9:E91433-E91433(2014)

    PubMed=24755471; DOI=10.1158/0008-5472.CAN-14-0013
    Mouradov D., Sloggett C., Jorissen R.N., Love C.G., Li S., Burgess A.W., Arango D., Strausberg R.L., Buchanan D., Wormald S., O'Connor L., Wilding J.L., Bicknell D.C., Tomlinson I.P.M., Bodmer W.F., Mariadason J.M., Sieber O.M.
    Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.
    Cancer Res. 74:3238-3247(2014)

    PubMed=25984343; DOI=10.1038/sdata.2014.35; PMCID=PMC4432652
    Cowley G.S., Weir B.A., Vazquez F., Tamayo P., Scott J.A., Rusin S., East-Seletsky A., Ali L.D., Gerath W.F.J., Pantel S.E., Lizotte P.H., Jiang G.-Z., Hsiao J., Tsherniak A., Dwinell E., Aoyama S., Okamoto M., Harrington W., Gelfand E.T., Green T.M., Tomko M.J., Gopal S., Wong T.C., Li H.-B., Howell S., Stransky N., Liefeld T., Jang D., Bistline J., Meyers B.H., Armstrong S.A., Anderson K.C., Stegmaier K., Reich M., Pellman D., Boehm J.S., Mesirov J.P., Golub T.R., Root D.E., Hahn W.C.
    Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
    Sci. Data 1:140035-140035(2014)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25841592; DOI=10.1016/j.jprot.2015.03.019
    Piersma S.R., Knol J.C., de Reus I., Labots M., Sampadi B.K., Pham T.V., Ishihama Y., Verheul H.M.W., Jimenez C.R.
    Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.
    J. Proteomics 127:247-258(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=25926053; DOI=10.1038/ncomms8002
    Medico E., Russo M., Picco G., Cancelliere C., Valtorta E., Corti G., Buscarino M., Isella C., Lamba S., Martinoglio B., Veronese S., Siena S., Sartore-Bianchi A., Beccuti M., Mottolese M., Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.
    The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.
    Nat. Commun. 6:7002.1-7002.10(2015)

    PubMed=25944804; DOI=10.1158/1078-0432.CCR-14-2457
    Bazzocco S., Dopeso H., Carton-Garcia F., Macaya I., Andretta E., Chionh F., Rodrigues P., Garrido M., Alazzouzi H., Nieto R., Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.
    Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.
    Clin. Cancer Res. 21:3695-3704(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=26537799; DOI=10.1074/mcp.M115.051235; PMCID=PMC4762531
    Holst S., Deuss A.J.M., van Pelt G.W., van Vliet S.J., Garcia-Vallejo J.J., Koeleman C.A.M., Deelder A.M., Mesker W.E., Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.
    N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.
    Mol. Cell. Proteomics 15:124-140(2016)

    PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
    Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miroo T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
    A landscape of pharmacogenomic interactions in cancer.
    Cell 166:740-754(2016)

    PubMed=28179481; DOI=10.1158/1535-7163.MCT-16-0578
    Tanaka N., Mashima T., Mizutani A., Sato A., Aoyama A., Gong B., Yoshida H., Muramatsu Y., Nakata K., Matsuura M., Katayama R., Nagayama S., Fujita N., Sugimoto Y., Seimiya H.
    APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer.
    Mol. Cancer Ther. 16:752-762(2017)

    PubMed=28192450; DOI=10.1371/journal.pone.0171435; PMCID=PMC5305277
    Fasterius E., Raso C., Kennedy S.A., Rauch N., Lundin P., Kolch W., Uhlen M., Al-Khalili Szigyarto C.
    A novel RNA sequencing data analysis method for cell line authentication.
    PLoS ONE 12:E0171435-E0171435(2017)

    PubMed=28683746; DOI=10.1186/s12943-017-0691-y; PMCID=PMC5498998
    Berg K.C.G., Eide P.W., Eilertsen I.A., Johannessen B., Bruun J., Danielsen S.A., Bjornslett M., Meza-Zepeda L.A., Eknaes M., Lind G.E., Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.
    Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.
    Mol. Cancer 16:116.1-116.16(2017)

    PubMed=28854368; DOI=10.1016/j.celrep.2017.08.010; PMCID=PMC5583477
    Roumeliotis T.I., Williams S.P., Goncalves E., Alsinet C., Del Castillo Velasco-Herrera M., Aben N., Ghavidel F.Z., Michaut M., Schubert M., Price S., Wright J.C., Yu L., Yang M., Dienstmann R., Guinney J.H., Beltrao P., Brazma A., Pardo M., Stegle O., Adams D.J., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Choudhary J.S.
    Genomic determinants of protein abundance variation in colorectal cancer cells.
    Cell Rep. 20:2201-2214(2017)

    PubMed=29101300; DOI=10.15252/msb.20177701; PMCID=PMC5731344
    Frejno M., Zenezini Chiozzi R., Wilhelm M., Koch H., Zheng R.-S., Klaeger S., Ruprecht B., Meng C., Kramer K., Jarzab A., Heinzlmeir S., Johnstone E., Domingo E., Kerr D.J., Jesinghaus M., Slotta-Huspenina J., Weichert W., Knapp S., Feller S.M., Kuster B.
    Pharmacoproteomic characterisation of human colon and rectal cancer.
    Mol. Syst. Biol. 13:951-951(2017)

    PubMed=29444439; DOI=10.1016/j.celrep.2018.01.051; PMCID=PMC6343826
    Yuan T.L., Amzallag A., Bagni R., Yi M., Afghani S., Burgan W., Fer N., Strathern L.A., Powell K., Smith B., Waters A.M., Drubin D.A., Thomson T., Liao R., Greninger P., Stein G.T., Murchie E., Cortez E., Egan R.K., Procter L., Bess M., Cheng K.T., Lee C.-S., Lee L.C., Fellmann C., Stephens R., Luo J., Lowe S.W., Benes C.H., McCormick F.
    Differential effector engagement by oncogenic KRAS.
    Cell Rep. 22:1889-1902(2018)

    PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747; PMCID=PMC6445675
    Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.
    An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
    Cancer Res. 79:1263-1273(2019)

    PubMed=30971826; DOI=10.1038/s41586-019-1103-9
    Behan F.M., Iorio F., Picco G., Goncalves E., Beaver C.M., Migliardi G., Santos R., Rao Y., Sassi F., Pinnelli M., Ansari R., Harper S., Jackson D.A., McRae R., Pooley R., Wilkinson P., van der Meer D.J., Dow D., Buser-Doepner C.A., Bertotti A., Trusolino L., Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.
    Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.
    Nature 568:511-516(2019)

    PubMed=31068700; DOI=10.1038/s41586-019-1186-3; PMCID=PMC6697103
    Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. 3rd, Barretina J.G., Gelfand E.T., Bielski C.M., Li H.-X., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y.-L., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
    Next-generation characterization of the Cancer Cell Line Encyclopedia.
    Nature 569:503-508(2019)"
     
    图标技术资料

    需要更多技术资料 索取更多技术资料

    资料下载:

    产品(17).jpg 附 (下载 0 次)

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥850
    上海冠导生物工程有限公司
    2025年07月13日询价
    询价
    上海哈灵生物科技有限公司
    2025年08月25日询价
    ¥1680
    上海沪震实业有限公司
    2025年05月18日询价
    ¥1280
    上海泽叶生物科技有限公司
    2025年06月17日询价
    ¥800
    上海抚生实业有限公司
    2025年07月10日询价
    文献支持
    RKO人结肠腺癌传代细胞种子库|送STR图谱
    ¥850 - 2150