相关产品推荐更多 >
万千商家帮你免费找货
0 人在求购买到急需产品
- 详细信息
- 文献和实验
- 技术资料
- 供应商:
Gilson吉尔森
- 保修期:
详询
Gilson 331/332 输液泵采用双柱塞杆技术,搭配多溶剂切换功能,是经济可靠的制备色谱系输液泵。331/332输液泵是正相和反相制备应用理想选择。331/332输液泵提供多溶剂选择,可选配四溶剂切换阀,最多可允许八种溶剂切换。系统内置可调体积的动态混合器,帮助优化梯度性能。
331/332输液泵-满足半制备级HPLC的输液泵方案
331/332输液泵流速范围从0.5 mL/min–50mL/min,最大压力可达8700 psi (600 bar),可搭配使用内径至30 mm ID的色谱柱。331可作为主泵进行控制。选择331主泵完成等度应用或331/332组合泵完成二元梯度应用。键盘控制包括安全文件,异常处理程序和GLP功能;TRILUTION®软件可控制整套制备系统,提供数据处理和结果报告。如果使用331作为主泵,可以控制:
• 流速梯度
• 四种流动相选择和阶梯梯度(需搭配切换阀)
• 复合梯度(需搭配另外1或2台泵)
• 进样泵
技术参数
| 331&332 输液泵 |
|
|
| 制造标准 | 符合相应的安全和EMC认证标准;UL和CE认证 | ||
| 前控制面板(331输液泵) | 40个字符,8行显示屏,可调对比度;25个功能按键,包含6个多功能键 | ||
| 液体接触材质 | 316L不锈钢、钛、FEP、PTFE、 PCTFE、ETFE、PEEK、UHMWPE、蓝宝石、红宝石和陶瓷 | ||
| 名义压力范围 | 0.5 MPa (5 bar, 70 psi),最高达60 MPa (600 bar, 8,700 psi) | ||
| 控制软件 | Gilson TRILUTION® LC控制软件或331控制面板 | ||
| 空间尺寸 (W x D x H) |
331: 26 x 41 x 50.7 cm 332: 26 x 41 x 38.7 cm | ||
| 重量 | 35 kg | ||
| 输液泵选项 | |||
| 331单溶剂主输液泵(带控制面板),0.05–50 mLmin, 60 MPa (8,700 psi) | |||
| 331/332双溶剂输液泵,0.5–50 mLmin, 60 MPa (8,700 psi) | |||
| 332 三溶剂系统,遥控控制泵(带控制面板),0.5–50 mLmin, 60 MPa (8,700 psi) | |||
| 运行环境 | |||
| 仅适合室内使用 | |||
| 海拔:可达2000m | |||
| 温度范围:5℃-40℃ | |||
| 气压:75–105 kPa | |||
| 污染级别:1或2,IEC66 | |||
| 湿度:31℃时最大相对湿度80%,40℃时相对湿度线性降为50% | |||
| 电源要求 | |||
| 频率:50-60Hz | |||
| 电压:100-120V或220–260V;最大压力波动不能超过±10% | |||
风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。
文献和实验[1]Lee H J, Jang H L, Ahn D K, et al. Orally administered collagen peptide protects against UVB-induced skin aging through the absorption of dipeptide forms, Gly-Pro and Pro-Hyp[J]. Bioscience, Biotechnology, and Biochemistry, 2019, 83(6): 1146-1156.
[2] Dönmez M E, Grennberg H. Analytical and preparative separation and isolation of functionalized fullerenes by conventional HPLC stationary phases: method development and column screening[J]. RSC advances, 2020, 10(33): 19211-19218.
[3] Ergun Dönmez M, Eriksson M, Hulu G, et al. Playing with Protic Additives to Improve the Outcome of Rhodium‐Catalyzed Hydroarylation of Fullerene C60 with Arylboronic Acids[J]. Helvetica Chimica Acta, 2024, 107(2): e202300206.
[4] González‐Lázaro M, Martínez‐Lapuente L, Guadalupe Z, et al. Evaluation of grape ripeness, carbonic maceration and pectolytic enzymes to improve the chemical and sensory quality of red sparkling wines[J]. Journal of the Science of Food and Agriculture, 2020, 100(6): 2618-2629.
[5] Mariappa D, Selvan N, Borodkin V S, et al. A mutant O-GlcNAcase as a probe to reveal global dynamics of protein O-GlcNAcylation during Drosophila embryonic development[J]. Biochemical Journal, 2015, 470(2): 255-262.
[6] Lizunova S A, Tsvetkov V B, Skvortsov D A, et al. Anticancer activity of G4-targeting phenoxazine derivatives in vitro[J]. Biochimie, 2022, 201: 43-54.
[7] Norgren A S, Norberg T, Arvidsson P I. Glycosylated foldamers: synthesis of carbohydrate‐modified β3hSer and incorporation into β‐peptides[J]. Journal of Peptide Science: An Official Publication of the European Peptide Society, 2007, 13(11): 717-727.
[8] Sánchez-Marzo N, Lozano-Sánchez J, Cádiz-Gurrea M L, et al. Relationships between chemical structure and antioxidant activity of isolated phytocompounds from lemon verbena[J]. Antioxidants, 2019, 8(8): 324.
[9] Gadapayale K, Kakde R, Sarma V U M. Reversed‐phase liquid chromatography with electrospray mass detection and 1H and 13C NMR characterization of new process‐related impurities, including forced degradants of Efavirenz: Related substances correlated to the synthetic pathway[J]. Journal of Separation Science, 2015, 38(2): 218-230.
[10] Borrás-Linares I, Pérez-Sánchez A, Lozano-Sánchez J, et al. A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells[J]. Food and Chemical Toxicology, 2015, 80: 215-222.
[11] Jimenez-Sanchez C, Olivares-Vicente M, Rodriguez-Perez C, et al. AMPK modulatory activity of olive–tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach[J]. PLoS One, 2017, 12(3): e0173074.
[12] Hwang N, Ban H, Chen J, et al. Synthesis of 4-oxotetrahydropyrimidine-1 (2H)-carboxamides derivatives as capsid assembly modulators of hepatitis B virus[J]. Medicinal Chemistry Research, 2021, 30: 459-472.
[13] Saida S J, Manikandan A, Kaliyaperumal M, et al. Identification, isolation and characterization of dolutegravir forced degradation products and their cytotoxicity potential[J]. Journal of pharmaceutical and biomedical analysis, 2019, 174: 588-594.
[14] Araujo P, Zhu H, Breivik J F, et al. Plackett-Burman Design and Fragmentation Studies to Assist the Comparison of Techniques used to Extract Phospholipids Prior to Regiospecific Characterization by Liquid Chromatography Mass Spectrometry[J]. American Journal of Modern Chromatography, 2016, 3(1): 1-22.
[15] Jiménez‐Sánchez C, Lozano‐Sánchez J, Brüggemann M, et al. Application and comparison of high‐speed countercurrent chromatography and high‐performance liquid chromatography in semi‐preparative separation of decarboxymethyl oleuropein aglycone (3, 4‐DHPEA‐EDA), a bioactive secoiridoid from extra‐virgin olive oil[J]. European Journal of Lipid Science and Technology, 2017, 119(2): 1500532.
[16] Saida S J, Muthuchamy M, Kaliyaperumal M, et al. Isolation and spectral characterization of degradation impurity in perampa nel drug substance using UPLC-MS and NMR spectroscopy: validation of assay method by UPLC[J]. Asian Journal of Chemistry, 2018, 30(10): 2215-2219.
[17] Olivares-Vicente M, Sánchez-Marzo N, Encinar J A, et al. The potential synergistic modulation of AMPK by Lippia citriodora compounds as a target in metabolic disorders[J]. Nutrients, 2019, 11(12): 2961.
[18] Udutha S, Borkar R M, Shankar G, et al. Stress degradation study of bortezomib: effect of co-solvent, isolation and characterization of degradation products by UHPLC-Q-TOF-MS/MS and NMR and evaluation of the toxicity of the degradation products[J]. New Journal of Chemistry, 2021, 45(18): 8178-8191.
技术资料需要更多技术资料 索取更多技术资料










