相关产品推荐更多 >
万千商家帮你免费找货
0 人在求购买到急需产品
- 详细信息
- 文献和实验
- 技术资料
- 规格:
T25
OCI-AML-3人急性髓系白血病细胞OCI-AML3细胞、OCI-AML-3细胞、OCI-AML-3人急性髓系白血病细胞
Cell line name OCI-AML-3
Synonyms OCI-Aml-3; OCI/AML-3; OCI-AML3; OCI/AML3; OCI AML3; OCIAML3; Ontario Cancer Institute-Acute Myeloid Leukemia-3
Accession CVCL_1844
Resource Identification Initiative To cite this cell line use: OCI-AML-3 (RRID:CVCL_1844)
Comments Part of: Cancer Dependency Map project (DepMap) (includes Cancer Cell Line Encyclopedia - CCLE).
Part of: COSMIC cell lines project.
Part of: LL-100 blood cancer cell line panel.
Population: Caucasian.
Doubling time: 28 hours (PubMed=25984343); ~35-40 hours (DSMZ=ACC-582).
Microsatellite instability: Stable (MSS) (Sanger).
Omics: H3K27ac ChIP-seq epigenome analysis.
Omics: CRISPR phenotypic screen.
Omics: Deep exome analysis.
Omics: Deep quantitative phosphoproteome analysis.
Omics: DNA methylation analysis.
Omics: shRNA library screening.
Omics: SNP array analysis.
Omics: Transcriptome analysis by microarray.
Omics: Transcriptome analysis by RNAseq.
Derived from site: In situ; Peripheral blood; UBERON=UBERON_0000178.
PubMed=2538684
Wang C., Curtis J.E., Minden M.D., McCulloch E.A.
Expression of a retinoic acid receptor gene in myeloid leukemia cells.
Leukemia 3:264-269(1989)
PubMed=12393637; DOI=10.1182/blood-2002-01-0271
Abbott B.L., Colapietro A.-M., Barnes Y.-X.E., Marini F.C., Andreeff M., Sorrentino B.P.
Low levels of ABCG2 expression in adult AML blast samples.
Blood 100:4594-4601(2002)
PubMed=16079892; DOI=10.1038/sj.leu.2403899
Quentmeier H., Martelli M.P., Dirks W.G., Bolli N., Liso A., MacLeod R.A.F., Nicoletti I., Mannucci R., Pucciarini A., Bigerna B., Martelli M.F., Mecucci C., Drexler H.G., Falini B.
Cell line OCI/AML3 bears exon-12 NPM gene mutation-A and cytoplasmic expression of nucleophosmin.
Leukemia 19:1760-1767(2005)
PubMed=16408098; DOI=10.1038/sj.leu.2404081
Quentmeier H., MacLeod R.A.F., Zaborski M., Drexler H.G.
JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders.
Leukemia 20:471-476(2006)
PubMed=21552520; DOI=10.1371/journal.pone.0019169; PMCID=PMC3084268
Gu T.-L., Nardone J., Wang Y., Loriaux M., Villen J., Beausoleil S.A., Tucker M., Kornhauser J.M., Ren J.-M., MacNeill J., Gygi S.P., Druker B.J., Heinrich M.C., Rush J., Polakiewicz R.D.
Survey of activated FLT3 signaling in leukemia.
PLoS ONE 6:E19169-E19169(2011)
PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Nature 483:603-607(2012)
PubMed=25984343; DOI=10.1038/sdata.2014.35; PMCID=PMC4432652
Cowley G.S., Weir B.A., Vazquez F., Tamayo P., Scott J.A., Rusin S., East-Seletsky A., Ali L.D., Gerath W.F.J., Pantel S.E., Lizotte P.H., Jiang G.-Z., Hsiao J., Tsherniak A., Dwinell E., Aoyama S., Okamoto M., Harrington W., Gelfand E.T., Green T.M., Tomko M.J., Gopal S., Wong T.C., Li H.-B., Howell S., Stransky N., Liefeld T., Jang D., Bistline J., Meyers B.H., Armstrong S.A., Anderson K.C., Stegmaier K., Reich M., Pellman D., Boehm J.S., Mesirov J.P., Golub T.R., Root D.E., Hahn W.C.
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Sci. Data 1:140035-140035(2014)
PubMed=25485619; DOI=10.1038/nbt.3080
Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
A comprehensive transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33:306-312(2015)
PubMed=25877200; DOI=10.1038/nature14397
Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
A resource for cell line authentication, annotation and quality control.
Nature 520:307-311(2015)
PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
Genome Med. 7:118.1-118.7(2015)
PubMed=26434589; DOI=10.1038/onc.2015.359; PMCID=PMC4705435
Ferreira H.J., Heyn H., Vizoso M., Moutinho C., Vidal E., Gomez A., Martinez-Cardus A., Simo-Riudalbas L., Moran S., Jost E., Esteller M.
DNMT3A mutations mediate the epigenetic reactivation of the leukemogenic factor MEIS1 in acute myeloid leukemia.
Oncogene 35:3079-3082(2016)
PubMed=27397505; DOI=10.1016/j.cell.2016.06.017; PMCID=PMC4967469
Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X.-M., Egan R.K., Liu Q.-S., Miro T., Mitropoulos X., Richardson L., Wang J.-H., Zhang T.-H., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
A landscape of pharmacogenomic interactions in cancer.
Cell 166:740-754(2016)
PubMed=28109323; DOI=10.1186/s13045-017-0396-0; PMCID=PMC5251306
Masetti R., Bertuccio S.N., Astolfi A., Chiarini F., Lonetti A., Indio V., De Luca M., Bandini J., Serravalle S., Franzoni M., Pigazzi M., Martelli A.M., Basso G., Locatelli F., Pession A.
Hh/Gli antagonist in acute myeloid leukemia with CBFA2T3-GLIS2 fusion gene.
J. Hematol. Oncol. 10:26.1-26.5(2017)
风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。
文献和实验*发表【中文论文】请标注:由上海酶研生物科技有限公司提供;
*发表【英文论文】请标注:From Shanghai EK-Bioscience Biotechnology Co., Ltd.
Cell Reports:浙大蒋晞课题组发文揭示阿片受体激动剂调控白血病表观遗传学修饰的新机制
through both catalytic and non-catalytic functions of TET2 的研究论文。该研究报道以洛哌丁胺(易蒙停)为代表的阿片受体激动剂在急性髓细胞性白血病(Acute myeloid leukemia, AML)中的潜在疗效,及其调控 TET 介导的 DNA 修饰的分子机制及信号通路。 为了明确 AML 发病过程中涉及到的信号转导通路,作者对细胞表面最大的受体超家族(G protein-coupled receptors (GPCRs))的激动剂和拮抗剂进行了小分子化合物筛选,发现阿片
Nature 子刊揭示最新特异性抗癌药物组合能有效杀死白血病癌细胞,同时不影响正常血细胞功能
系的 9 种不同癌症类型的细胞系进行线粒体化疗药物敏感性筛查,博士后研究员 Svetlana Panina 等人发现白血病细胞株(MOLM- 13, THP- 1, OCI-AML2 和 MV- 4 - 11)对线粒体损伤最为敏感。研究人员首次发现,低剂量的解偶联蛋白羰基氰化物间氯苯腙(CCCP)与糖酵解抑制剂 2 -DG 的混合物能够有效降低白血病细胞的线粒体代谢活性,降低其能量代谢的偶联效率,并导致癌细胞死亡率超过 80%。而健康的血细胞的死亡率仅为 30% 左右。但是这一组合药剂对固态肿瘤的效果欠佳
冻死癌细胞能治病?浙大顾臻等 Sci Adv 封面发表「死细胞疗法」,既能靶向治疗又能疫苗接种
急性髓性白血病(Acute myeloid leukemia, AML)是一种血液恶性肿瘤,其 5 年生存率仅为 30%。化疗是诱导 AML 缓解的重要方法之一,但存在副作用大、预后不佳、复发率高等问题。化疗后造血干细胞移植(HSCT)是目前唯一可能治愈 AML 的方法。然而,HSCT 面临缺乏合适的造血干细胞供体、移植相关死亡风险高等一系列难题。因此,迫切需要寻找更合适的 AML 治疗策略,尤其是靶向骨髓的特异性治疗策略。2020 年 12 月 9 日,浙江大学药学院顾臻教授团队
技术资料







