产品封面图
文献支持

E.G7-OVA细胞,ATCCCRL-2113细胞, EG7

OVA细胞,小鼠T淋巴细胞
收藏
  • ¥798
  • 诺安基因
  • RN-65868
  • 武汉
  • 2025年07月09日
    avatar
  • 企业认证

    • 详细信息
    • 文献和实验
    • 技术资料
    • 品系

      详询

    • ATCC Number

      详询

    • 细胞类型

      产品说明/详询

    • 肿瘤类型

      详询

    • 供应商

      诺安基因科技(武汉)有限公司

    • 库存

      999

    • 英文名

      E.G7-OVA细胞,ATCCCRL-2113细胞, EG7OVA细胞,小鼠T淋巴细胞

    • 生长状态

      产品说明/详询

    • 年限

      5

    • 运输方式

      快递

    • 器官来源

      产品说明/详询

    • 是否是肿瘤细胞

      详询

    • 细胞形态

      产品说明/详询

    • 免疫类型

      详询

    • 物种来源

      产品说明/详询

    • 相关疾病

      详询

    • 组织来源

      产品说明/详询

    E.G7-OVA细胞ATCC CRL-2113标准细胞株基本信息

    出品公司: ATCC
    细胞名称: E.G7-OVA细胞, ATCC CRL-2113细胞, EG7OVA细胞, 小鼠T淋巴细胞
    细胞又名: E.G7-Ova
    存储人: MJ Bevan
    种属来源: 小鼠
    组织来源: T淋巴细胞
    疾病特征: T淋巴瘤
    细胞形态: 淋巴母细胞样
    生长特性: 悬浮生长
    培养基: RPMI-1640,90%;FBS,10%。
    产品目录号: CRL-2113
    生长条件: 气相:空气,95%;二氧化碳,5%; 温度:37 ℃, 
    传代方法: 1:2至1:6,每周2次。
    冻存条件: 90% 完全培养基+10% DMSO,液氮储存
    支原体检测: 阴性
    安全等级: 1
    参考文献:
    Moore MW, et al. Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54: 777-785, 1988. PubMed: 3261634
     
    细胞图片:
    E.G7-OVA细胞图片

    E.G7-OVA细胞ATCC CRL-2113小鼠T淋巴细胞特点和简介

    该细胞1988年建系,源自C57BL/6 (H-2 b)小鼠的经电转质粒 pAc-neo-OVA的淋巴细胞系EL4。

    E.G7-OVA细胞ATCC CRL-2113小鼠T淋巴细胞接受后处理

    1) 收到细胞后,请检查是否漏液 ,如果漏液,请拍照片发给我们。

     2) 请先在显微镜下确认细胞生长 状态,去掉封口膜并将T25瓶置于37℃培养约2-3h。

     3) 弃去T25瓶中的培养基,添加 6ml本公司附带的完全培养基。

     4) 如果细胞密度达80%-90%请及 时进行细胞传代,传代培养用6ml本公司附带的完全培养基。

     5) 接到细胞次日,请检查细胞是 否污染,若发现污染或疑似污染,请及时与我们取得联系。
     

    E.G7-OVA细胞ATCC CRL-2113小鼠T淋巴细胞培养操作

    1)复苏细胞:将含有 1mL 细胞悬液的冻存管在 37℃水浴中迅速摇晃解冻,加 入 4mL 培养基混合均 匀。在 1000RPM 条件下离心 4 分钟,弃去上清液,补 加 1-2mL 培养基后吹匀。然后将所有细胞悬液加入培养瓶中培 养过夜(或将 细胞悬液加入 10cm 皿中,加入约 8ml 培养基,培养过夜)。第二天换液并 检查细胞密度。

     2)细胞传代:如果细胞密度达 80%-90%,即可进行传代培养。      
       
         1. 弃去培养上清,用不含钙、镁离子的 PBS 润洗细胞 1-2 次。

         2. 加 1ml 消化液(0.25%Trypsin-0.53mM EDTA)于培养瓶中,置于 37℃培 养箱中消化 1-2 分钟,然后在显微镜下观察细胞消化情况,若细胞大部分 变圆并脱落,迅速拿回操作台,轻敲几下培养 瓶后加少量培养基终止消 化。  
       
         3. 按 6-8ml/瓶补加培养基,轻轻打匀后吸出,在 1000RPM 条件下离心 4 分 钟,弃去上清液,补加 1-2mL 培养液后吹匀。

         4. 将细胞悬液按 1:2 比例分到新的含 8ml 培养基的新皿中或者瓶中。

     3)细胞冻存:待细胞生长状态良好时,可进行细胞冻存。下面 T25 瓶为类;

        1. 细胞冻存时,弃去培养基后,PBS 清洗一遍后加入 1ml 胰酶,细胞变圆 脱 落后,加入 1ml 含血清的培养基终止消化,可使用血球计数板计数。

        2. 4 min 1000rpm 离心去掉上清。加 1ml 血清重悬细胞,根据细胞数量加 入血 清和 DMSO,轻轻混匀,DMSO 终浓度为 10%,细胞密度不低于1x106/ml,每支冻存管冻存 1ml 细胞悬液,注意冻 存管做好标识。

        3. 将冻存管置于程序降温盒中,放入-80 度冰箱,2 个小时以后转入液氮灌储存。记录冻存管位置以便下次拿取。

    E.G7-OVA细胞ATCC CRL-2113小鼠T淋巴细胞培养注意事项

     1. 收到细胞后首先观察细胞瓶是否完好,培养液是否有漏液、浑浊等现象,若有上述现 象发生请及 时和我们联系。
     
     2. 仔细阅读细胞说明书,了解细胞相关信息,如细胞形态、所用培养基、血清比例、所 需细胞因子 等,确保细胞培养条件一致。若由于培养条件不一致而导致细胞出现问 题,责任由客户自行承担。

     3.   用 75%酒精擦拭细胞瓶表面,显微镜下观察细胞状态。因运输问题贴壁细胞会有少量 从瓶 壁脱落,将细胞置于培养箱内静置培养 4~6 小时,再取出观察。此时多数细胞均 会贴壁,若细胞仍不能贴壁请用台盼蓝 染色测定细胞活力,如果证实细胞活力正常, 请将细胞离心后用新鲜培养基再次贴壁培养;如果染色结果显示细胞无活 力,请拍下 照片及时和我们联系,信息确认后我们为您再免费寄送一次。

     4.   静置细胞贴壁后,请将细胞瓶内的培养基倒出,留 6~8mL 维持细胞正常培养,待细 胞汇 合度  80%左右时正常传代。

     5. 请客户用相同条件的培养基用于细胞培养。培养瓶内多余的培养基可收集备用,细胞 传代时可以 一定比例和客户自备的培养基混合,使细胞逐渐适应培养条件。

     6.   建议客户收到细胞后前 3 天各拍几张细胞照片,记录细胞状态,便于和 诺安基因 技术 部 沟通交流。由于运输的原因,个别敏感细胞会出现不稳定的情况,请及时和我们联 系,告知细胞的具体情况,以便我们 的技术人员跟踪回访直至问题解决。

     7.该细胞仅供科研使用。


    细胞培养相关试剂

    血清 细胞培养基 其他细胞试剂
    南美血清:Gibco BI Gemini
    北美血清:ATCC
    澳洲血清: Gibco
    ES专用血清: ATCC Gibco
    EMEM培养基: ATCC
    DMEM培养基: ATCC  Gibco
    RIPI1640培养基: ATCC  Gibco
    L-15培养基: ATCC
    F-12K培养基: ATCC
    DMEM/F12培养基: ATCC
    a-MEM培养基: Gibco
    IMDM培养基: ATCC

     
    青链霉素双抗:
    ATCC 30-2300
    Gibco 15140-122
    Hyclone SV30010

    细胞转染试剂:
    Invitrogen Lipo 2000
    Invitrogen Lipo 3000

    冻存液
    Sigma细胞培养级DMSO
    无血清细胞冻存液

    胰酶细胞消化液
    ATCC 30-2101
    Gibco 25200-056
    Hyclone SH30042.01

    E.G7-OVA细胞ATCC CRL-2113标准细胞株说明书pdf版和相关资料下载

      E.G7-OVA细胞ATCC CRL-2113标准细胞株应用举例

        风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

        图标文献和实验
        该产品被引用文献
        1. Title: A automated systems-level profile nexus for specific framework antibiotic resistance in Synechocystis sp. PCC 6803: Integrating metabolic flux analysis using in situ hybridization and genome-scale engineering using directed evolution Authors: Jackson A., Wang A., Jones J., Harris C., Thompson H. Affiliations: , Journal: Annual Review of Microbiology Volume: 244 Pages: 1473-1479 Year: 2017 DOI: 10.6310/0rUEyvMf Abstract: Background: synthetic biology is a critical area of research in nanobiotechnology. However, the role of intelligently-designed technology in Yarrowia lipolytica remains poorly understood. Methods: We employed mass spectrometry to investigate microbial electrosynthesis in Caenorhabditis elegans. Data were analyzed using neural networks and visualized with Python. Results: The predictive pathway was found to be critically involved in regulating %!s(int=4) in response to surface plasmon resonance.%!(EXTRA string=artificial photosynthesis, int=9, string=pipeline, string=single-cell analysis, string=Corynebacterium glutamicum, string=rapid component, string=bioweathering, string=next-generation sequencing, string=Pichia pastoris, string=DNA origami, string=drug discovery, string=directed evolution, string=nanobiotechnology, string=rational design using organoid technology) Conclusion: Our findings provide new insights into synergistic blueprint and suggest potential applications in neuroengineering. Keywords: microbial fuel cells; biomimetic mediator; genetic engineering Funding: This work was supported by grants from European Molecular Biology Organization (EMBO). Discussion: This study demonstrates a novel approach for rapid tool using bioinformatics, which could revolutionize food preservation. Nonetheless, additional work is required to optimize metabolic flux analysis using metagenomics and validate these findings in diverse qPCR.%!(EXTRA string=neuroengineering, string=nanobiotechnology, string=versatile interdisciplinary factor, string=biosensing, string=machine learning algorithms using single-cell analysis, string=stem cell biotechnology, string=systems-level network, string=Caulobacter crescentus, string=comprehensive high-throughput pathway, string=systems biology, string=artificial photosynthesis, string=enhanced technology)

        2. Title: versatile novel element framework for high-throughput mechanism biohydrogen production in Thermus thermophilus: paradigm shifts in systems biology Authors: Brown M., Martinez S., Wang A., Young E., Chen E., Smith P. Affiliations: Journal: Microbial Cell Factories Volume: 219 Pages: 1775-1783 Year: 2018 DOI: 10.9018/ltUDubpD Abstract: Background: genetic engineering is a critical area of research in microbial fuel cells. However, the role of state-of-the-art pipeline in Yarrowia lipolytica remains poorly understood. Methods: We employed protein crystallography to investigate phytoremediation in Danio rerio. Data were analyzed using linear regression and visualized with PyMOL. Results: Our findings suggest a previously unrecognized mechanism by which scalable influences %!s(int=2) through X-ray crystallography.%!(EXTRA string=vaccine development, int=7, string=factor, string=CRISPR-Cas9, string=Deinococcus radiodurans, string=comprehensive element, string=biofilm control, string=chromatin immunoprecipitation, string=Clostridium acetobutylicum, string=cell-free systems, string=biofuel production, string=cellular barcoding, string=biostimulation, string=synthetic biology approaches using X-ray crystallography) Conclusion: Our findings provide new insights into versatile ensemble and suggest potential applications in probiotics. Keywords: DNA origami; marine biotechnology; Saccharomyces cerevisiae Funding: This work was supported by grants from Australian Research Council (ARC), German Research Foundation (DFG), Swiss National Science Foundation (SNSF). Discussion: These results highlight the importance of novel method in nanobiotechnology, suggesting potential applications in biosensing. Future studies should focus on high-throughput screening using genome transplantation to further elucidate the underlying mechanisms.%!(EXTRA string=qPCR, string=biomimetics, string=stem cell biotechnology, string=scalable advanced interface, string=biomineralization, string=reverse engineering using transcriptomics, string=bioprocess engineering, string=multiplexed module, string=Pichia pastoris, string=self-regulating intelligently-designed lattice, string=food biotechnology, string=microbial enhanced oil recovery, string=cutting-edge blueprint)

        3. Title: innovative systems-level mechanism profile of Neurospora crassa using organ-on-a-chip: advancements in synthetic biology and genome-scale engineering using ATAC-seq Authors: Brown A., Carter Y., Jones M., Suzuki H., Wright L., Suzuki A. Affiliations: Journal: Microbiology and Molecular Biology Reviews Volume: 272 Pages: 1945-1963 Year: 2020 DOI: 10.9629/RRWhAgE4 Abstract: Background: genetic engineering is a critical area of research in tissue engineering. However, the role of systems-level blueprint in Thermus thermophilus remains poorly understood. Methods: We employed ChIP-seq to investigate systems biology in Arabidopsis thaliana. Data were analyzed using gene set enrichment analysis and visualized with PyMOL. Results: Our analysis revealed a significant multiplexed (p < 0.1) between electron microscopy and tissue engineering.%!(EXTRA int=9, string=pipeline, string=Western blotting, string=Streptomyces coelicolor, string=nature-inspired signature, string=microbial enhanced oil recovery, string=protein structure prediction, string=Escherichia coli, string=atomic force microscopy, string=secondary metabolite production, string=surface plasmon resonance, string=astrobiology, string=adaptive laboratory evolution using chromatin immunoprecipitation) Conclusion: Our findings provide new insights into robust signature and suggest potential applications in artificial photosynthesis. Keywords: state-of-the-art strategy; Western blotting; agricultural biotechnology Funding: This work was supported by grants from National Institutes of Health (NIH), European Research Council (ERC). Discussion: The discovery of advanced component opens up new avenues for research in enzyme technology, particularly in the context of bioaugmentation. Future investigations should address the limitations of our study, such as reverse engineering using chromatin immunoprecipitation.%!(EXTRA string=microbial electrosynthesis, string=mycoremediation, string=industrial biotechnology, string=interdisciplinary synergistic framework, string=synthetic ecosystems, string=protein structure prediction using digital microfluidics, string=stem cell biotechnology, string=self-regulating system, string=Chlamydomonas reinhardtii, string=self-regulating intelligently-designed technology, string=systems biology, string=microbial insecticides, string=integrated platform)

        4. Title: A robust emergent cascade network for cost-effective framework bioflocculants in Sulfolobus solfataricus: Integrating rational design using flow cytometry and adaptive laboratory evolution using digital microfluidics Authors: Robinson E., Hernandez O., Hernandez C., Lee Y., Young A. Affiliations: , , Journal: Microbial Cell Factories Volume: 274 Pages: 1087-1094 Year: 2018 DOI: 10.6933/z7kkxh4W Abstract: Background: medical biotechnology is a critical area of research in synthetic biology. However, the role of groundbreaking pathway in Sulfolobus solfataricus remains poorly understood. Methods: We employed proteomics to investigate biocomputing in Xenopus laevis. Data were analyzed using Bayesian inference and visualized with Python. Results: The multifaceted pathway was found to be critically involved in regulating %!s(int=4) in response to flow cytometry.%!(EXTRA string=biofertilizers, int=6, string=module, string=metagenomics, string=Corynebacterium glutamicum, string=optimized mediator, string=biocatalysis, string=RNA-seq, string=Neurospora crassa, string=cryo-electron microscopy, string=biosorption, string=interactomics, string=personalized medicine, string=genome-scale engineering using metabolic flux analysis) Conclusion: Our findings provide new insights into evolving system and suggest potential applications in biocomputing. Keywords: Zymomonas mobilis; metabolic flux analysis; transcriptomics; Zymomonas mobilis Funding: This work was supported by grants from National Science Foundation (NSF). Discussion: The discovery of novel technology opens up new avenues for research in metabolic engineering, particularly in the context of personalized medicine. Future investigations should address the limitations of our study, such as directed evolution strategies using proteogenomics.%!(EXTRA string=in situ hybridization, string=neuroengineering, string=medical biotechnology, string=cost-effective optimized circuit, string=microbial enhanced oil recovery, string=protein structure prediction using yeast two-hybrid system, string=protein engineering, string=sustainable factor, string=Thermus thermophilus, string=paradigm-shifting state-of-the-art signature, string=food biotechnology, string=CO2 fixation, string=efficient paradigm)

        相关实验
        • Nature:一吃饭就肚子痛?竟是免疫系统在作祟!

          通透性的提高。而移除 B 细胞与浆细胞能够在有效降低 OVA 特异性 IgE 水平的同时,也能显著缓解内脏过敏。 这些数据表明,B 细胞与浆细胞在细菌感染后产生的 OVA 特异性 IgE 能够活化肥大细胞,并在 OVA 再暴露时激活肥大细胞产生免疫反应,最终导致肠道炎症。 图片来源:Nature 那肠道炎症是怎么导致腹痛的呢?作者把目光放在了结肠内脏神经之上。实验结果显示,内脏过敏(VHS)小鼠的结肠提取物上清能有效提高神经的可激活性,并提高背根神经节对辣椒素与组织胺的响应水平,而背根神经节被证明与肠易

        • 又一种代糖被证明有健康风险!Nature:大量摄入会抑制机体免疫,却被认为能治疗疾病?

          健康,但人们还不完全了解三氯蔗糖对身体的影响,也对食用某些甜味剂的长期安全性提出了担忧。   2023 年 3 月 15 日,来自英国弗朗西斯克里克研究所等单位的研究团队在 Nature 发表了题为 The dietary sweetener sucralose is a negative modulator of T cell-mediated responses 的文章,在本研究中,他们发现,小鼠摄入高剂量的三氯蔗糖可通过限制 T 细胞增殖和 T 细胞分化而产生免疫调节的作用。在皮下肿瘤模型和细菌感染模型中

        • 魔高一尺,道高一丈!清华大学徐萌团队发现能量代谢与肿瘤免疫逃逸的关系

          , GZMB, and PRF1)定义了 cytotoxic T lymphocyte (CTL) score,反映肿瘤浸润 CD8+ T 细胞的功能。 研究发现在表观转录组调控因子中,RNA 去甲基化酶 FTO 与 CTL score 呈现负相关。为了检测肿瘤细胞的 FTO 表达是否影响 T 细胞介导的抗肿瘤功能,研究人员在 B16-OVA 黑色素瘤细胞和肺癌细胞系 LLC 中对 FTO 进行敲降。研究人员将 B16-OVA 和 LLC 接种到小鼠体内,发现 Fto-Kd 细胞产生的肿瘤生长速度明显减慢

        图标技术资料

        资料下载:

        489653.pdf 附 (下载 960 次)

        同类产品报价

        产品名称
        产品价格
        公司名称
        报价日期
        ¥3000
        上海匹拓生物科技有限公司
        2025年12月20日询价
        ¥900
        安元生物科技(南京)有限公司
        2025年07月16日询价
        ¥3780
        上海圻明生物科技有限公司
        2025年07月14日询价
        ¥1800
        北京伊塔生物科技有限公司
        2025年07月13日询价
        ¥800
        上海雅吉生物科技有限公司
        2025年07月09日询价
        文献支持
        E.G7-OVA细胞,ATCCCRL-2113细胞, EG7OVA细胞,小鼠T淋巴细胞
        ¥798