相关产品推荐更多 >
万千商家帮你免费找货
0 人在求购买到急需产品
- 详细信息
- 文献和实验
- 技术资料
- 克隆性:
17A2
- 标记物:
SAFIRE Purified
- 规格:
500 μg
T细胞扩增用抗体,CD3/C0D28功能性抗体
助力CAR-T及免疫细胞治疗研究

风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。
文献和实验[1] Tan J, Liu H, Huang M, et al. Small molecules targeting RORγt inhibit autoimmune disease by suppressing Th17 cell differentiation. Cell Death Dis. 2020;11(8):697. Published 2020 Aug 22. doi:10.1038/s41419-020-02891-2
[2] Xie Y, Zhang Y, Wei X, et al. Jianpi Huayu Decoction Attenuates the Immunosuppressive Status of H22 Hepatocellular Carcinoma-Bearing Mice: By Targeting Myeloid-Derived Suppressor Cells. Front Pharmacol. 2020;11:16. Published 2020 Feb 18. doi:10.3389/fphar.2020.00016
[3] Li C, Lin Y, Zheng H, et al. Glutamate transporter SLC1A6 promotes resistance to immunotherapy in cancer. Cancer Immunol Immunother. 2025;74(8):240. Published 2025 Jun 7. doi:10.1007/s00262-025-04074-4
[4] Han J, Gao F, Geng S, et al. Minicircle DNA-Engineered CAR T Cells Suppressed Tumor Growth in Mice. Mol Cancer Ther. 2020;19(1):178-186. doi:10.1158/1535-7163.MCT-19-0204
[5] Zhang Z, Yang Y, Chen Y, Su J, Du W. Malic enzyme 2 maintains metabolic state and anti-tumor immunity of CD8+ T cells. Mol Cell. 2024;84(17):3354-3370.e7. doi:10.1016/j.molcel.2024.07.021
[6] Xu W, Hu M, Lu X, et al. Inhibition of PCSK9 enhances the anti-hepatocellular carcinoma effects of TCR-T cells and anti-PD-1 immunotherapy. Int J Biol Sci. 2024;20(10):3942-3955. Published 2024 Jul 15. doi:10.7150/ijbs.93668
[7] Zhang X, Chen R, Huo Z, et al. Blood-based molecular and cellular biomarkers of early response to neoadjuvant PD-1 blockade in patients with non-small cell lung cancer. Cancer Cell Int. 2024;24(1):225. Published 2024 Jun 29. doi:10.1186/s12935-024-03412-3
[8] Wang R, Li C, Cheng Z, et al. H3K9 lactylation in malignant cells facilitates CD8+ T cell dysfunction and poor immunotherapy response. Cell Rep. 2024;43(9):114686. doi:10.1016/j.celrep.2024.114686
[9] Tang D, Zhao L, Yan F, Ren C, Xu K, Zhao K. Expression of VISTA regulated via IFN-γ governs endogenous T-cell function and exhibits correlation with the efficacy of CD19 CAR-T cell treated B-malignant mice. J Immunother Cancer. 2024;12(6):e008364. Published 2024 Jun 25. doi:10.1136/jitc-2023-008364
[10] Fan Z, Yi Z, Li S, He J. Parabacteroides distasonis promotes CXCL9 secretion of tumor-associated macrophages and enhances CD8+T cell activity to trigger anti-tumor immunity against anti-PD-1 treatment in non-small cell lung cancer mice. BMC Biotechnol. 2025;25(1):30. Published 2025 Apr 16. doi:10.1186/s12896-025-00963-9
[11] Ren H, Chen Y, Zhu Z, et al. FOXO1 regulates Th17 cell-mediated hepatocellular carcinoma recurrence after hepatic ischemia-reperfusion injury. Cell Death Dis. 2023;14(6):367. Published 2023 Jun 17. doi:10.1038/s41419-023-05879-w
[12] Fan W, Wang X, Zeng S, et al. Global lactylome reveals lactylation-dependent mechanisms underlying TH17 differentiation in experimental autoimmune uveitis. Sci Adv. 2023;9(42):eadh4655. doi:10.1126/sciadv.adh4655
[13] Li P, Zhou D, Chen D, et al. Tumor-secreted IFI35 promotes proliferation and cytotoxic activity of CD8+ T cells through PI3K/AKT/mTOR signaling pathway in colorectal cancer. J Biomed Sci. 2023;30(1):47. Published 2023 Jun 28. doi:10.1186/s12929-023-00930-6
[14] Liu Y, Zhou Y, Huang KH, et al. EGFR-specific CAR-T cells trigger cell lysis in EGFR-positive TNBC. Aging (Albany NY). 2019;11(23):11054-11072. doi:10.18632/aging.102510
[15] Dabbah-Krancher G, Ruchinskas A, Kallarakal MA, et al. A20 intrinsically influences human effector T-cell survival and function by regulating both NF-κB and JNK signaling. Eur J Immunol. 2024;54(12):e2451245. doi:10.1002/eji.202451245
[16] Yu W, Wang K, He Y, et al. The potential role of lung microbiota and lauroylcarnitine in T-cell activation associated with checkpoint inhibitor pneumonitis. EBioMedicine. 2024;106:105267. doi:10.1016/j.ebiom.2024.105267
[17] Zhang XY, Shi JB, Jin SF, et al. Metabolic landscape of head and neck squamous cell carcinoma informs a novel kynurenine/Siglec-15 axis in immune escape. Cancer Commun (Lond). 2024;44(6):670-694. doi:10.1002/cac2.12545
[18] Shang S, Yang C, Chen F, et al. ID1 expressing macrophages support cancer cell stemness and limit CD8+ T cell infiltration in colorectal cancer. Nat Commun. 2023;14(1):7661. Published 2023 Nov 23. doi:10.1038/s41467-023-43548-w
[19] Wang X, Fang Y, Liang W, et al. Fusobacterium nucleatum facilitates anti-PD-1 therapy in microsatellite stable colorectal cancer. Cancer Cell. 2024;42(10):1729-1746.e8. doi:10.1016/j.ccell.2024.08.019
[20] Lkhagva-Yondon E, Seo MS, Oh Y, et al. The aryl hydrocarbon receptor controls mesenchymal stromal cell-mediated immunomodulation via ubiquitination of eukaryotic elongation factor-2 kinase. Cell Death Dis. 2023;14(12):812. Published 2023 Dec 9. doi:10.1038/s41419-023-06341-7
[21] Xu G, Wang J, Qu Y, et al. GSTP1 improves CAR-T cell proliferation and cytotoxicity to combat lymphoma. Front Immunol. 2025;16:1665407. Published 2025 Sep 26. doi:10.3389/fimmu.2025.1665407
[22] Wang F, Li Y, Yang Z, et al. Targeting IL-17A enhances imatinib efficacy in Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia. Nat Commun. 2024;15(1):203. Published 2024 Jan 3. doi:10.1038/s41467-023-44270-3
[23] Li S, Feng J, Wu F, et al. TET2 promotes anti-tumor immunity by governing G-MDSCs and CD8+ T-cell numbers. EMBO Rep. 2020;21(10):e49425. doi:10.15252/embr.201949425
[24] Nahmad AD, Reuveni E, Goldschmidt E, et al. Frequent aneuploidy in primary human T cells after CRISPR-Cas9 cleavage. Nat Biotechnol. 2022;40(12):1807-1813. doi:10.1038/s41587-022-01377-0
[25] Chen X, Huang D, Zhao L, et al. Fluvastatin Promotes Treg Cell Production in Allogeneic Immune Reaction and Suppresses Inflammatory Response. Immun Inflamm Dis. 2025;13(2):e70165. doi:10.1002/iid3.70165
[26] Han K, Li SS, Pan W, et al. ERK/MEK Pathway Regulates Th17 Cell Differentiation in Patients with Pemphigus Vulgaris. Indian J Dermatol. 2023;68(6):724. doi:10.4103/ijd.ijd_924_22
[27] Zhan Y, Cao J, Ji L, et al. Impaired mitochondria of Tregs decreases OXPHOS-derived ATP in primary immune thrombocytopenia with positive plasma pathogens detected by metagenomic sequencing. Exp Hematol Oncol. 2022;11(1):48. Published 2022 Sep 1. doi:10.1186/s40164-022-00304-y
[28] Kim M, Kim SD, Kim KI, et al. Dynamics of T Lymphocyte between the Periphery and the Brain from the Acute to the Chronic Phase Following Ischemic Stroke in Mice. Exp Neurobiol. 2021;30(2):155-169. doi:10.5607/en20062
[29] Han SM, Park ES, Park J, et al. Unique adipose tissue invariant natural killer T cell subpopulations control adipocyte turnover in mice. Nat Commun. 2023;14(1):8512. Published 2023 Dec 21. doi:10.1038/s41467-023-44181-3
[30] Chen Z, Hu Y, Gong Y, et al. Interleukin-33 alleviates psoriatic inflammation by suppressing the T helper type 17 immune response. Immunology. 2020;160(4):382-392. doi:10.1111/imm.13203
[31] Mai Q, Du Q, Zeng F, et al. Galectin-3 suppresses CD8+ T cells function via myeloid-derived suppressor cells recruitment in cervical cancer. Int J Biol Macromol. 2025;311(Pt 4):143683. doi:10.1016/j.ijbiomac.2025.143683
[32] Zhang Z, Ji W, Huang J, et al. Characterization of the tumour microenvironment phenotypes in malignant tissues and pleural effusion from advanced osteoblastic osteosarcoma patients. Clin Transl Med. 2022;12(11):e1072. doi:10.1002/ctm2.1072
[33] Jang SE, Jeong JJ, Choi SY, Kim H, Han MJ, Kim DH. Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus La-14 Attenuate Gardnerella vaginalis-Infected Bacterial Vaginosis in Mice. Nutrients. 2017;9(6):531. Published 2017 May 23. doi:10.3390/nu9060531
[34] Huang H, Guo F, Deng X, et al. Modulation of T Cell Responses by Fucoidan to Inhibit Osteogenesis. Front Immunol. 2022;13:911390. Published 2022 Jun 23. doi:10.3389/fimmu.2022.911390
[35] Lee MH, Lee YS, Kim HJ, Han CH, Kang SU, Kim CH. Non-thermal plasma inhibits mast cell activation and ameliorates allergic skin inflammatory diseases in NC/Nga mice. Sci Rep. 2019;9(1):13510. Published 2019 Sep 18. doi:10.1038/s41598-019-49938-9
[36] Wang Y, Xiang Q, Wu Y, et al. Mesenchymal Stem Cell-Derived Exosomes Inhibit Stim1-Orai1 Signaling and Calcium Overload-Induced Mitochondrial Damage of Follicular Helper T Cells in Lupus. Biomater Res. 2025;29:0255. Published 2025 Sep 22. doi:10.34133/bmr.0255
[37] Kaisar-Iluz N, Arpinati L, Shaul ME, et al. The Bilateral Interplay between Cancer Immunotherapies and Neutrophils' Phenotypes and Sub-Populations. Cells. 2022;11(5):783. Published 2022 Feb 23. doi:10.3390/cells11050783
[38] Yu A, Hu J, Fu L, et al. Bladder cancer intrinsic LRFN2 drives anticancer immunotherapy resistance by attenuating CD8+ T cell infiltration and functional transition. J Immunother Cancer. 2023;11(10):e007230. doi:10.1136/jitc-2023-007230
[39] Qian Y, Sun Y, Shi P, et al. Development of LAG-3/FGL1 blocking peptide and combination with radiotherapy for cancer immunotherapy. Acta Pharm Sin B. 2024;14(3):1150-1165. doi:10.1016/j.apsb.2023.12.011
[40] Deng C, Xu Y, Chen H, et al. Extracellular-vesicle-packaged S100A11 from osteosarcoma cells mediates lung premetastatic niche formation by recruiting gMDSCs. Cell Rep. 2024;43(2):113751. doi:10.1016/j.celrep.2024.113751
[41] Jin S, Wang H, Li Y, et al. Discovery of a novel small molecule as CD47/SIRPα and PD-1/PD-L1 dual inhibitor for cancer immunotherapy. Cell Commun Signal. 2024;22(1):173. Published 2024 Mar 11. doi:10.1186/s12964-024-01555-4
[42] Cao W, Cao J, Li X, et al. A novel inducible haematopoietic cell-depleting mouse model for chimeric complementation of blood cells. Cell Prolif. 2023;56(5):e13472. doi:10.1111/cpr.13472
[43] Wan D, Zhang Q, Yang Z, et al. Engineered oncolytic virus OH2-FLT3L enhances antitumor immunity via dendritic cell activation. Mol Ther Oncol. 2025;33(2):200975. Published 2025 Mar 21. doi:10.1016/j.omton.2025.200975
[44] Feng S, Wang D, Jin Y, et al. Blockage of L2HGDH-mediated S-2HG catabolism orchestrates macrophage polarization to elicit antitumor immunity. Cell Rep. 2024;43(6):114300. doi:10.1016/j.celrep.2024.114300
分别利用 CD3 与 CD28 的功能学抗体,以及 CD3/CD28 Streptamer® 激活扩增 T 细胞的实验步骤与实验结果。 CD3/CD28抗体法 1、实验步骤: 1.1 抗体包被 用无菌 PBS 将 anti-mouse CD3 抗体(克隆号:145-2C11)稀释至 5μg/ml,稀释后的抗体加入到 24 孔板中,每孔 400μl,4°C 包被过夜。(注:板子在加入抗体之前,先用无菌 PBS 润洗 2-3 遍,避免干孔); 1.2 小鼠脾脏淋巴细胞分离(次日) 1. 将 70μm
Dynabeads® Mouse T-Activator CD3/CD28 – for physiological activation of mouse T cells
volume of Dynabeads taken from the vial (step 2). 2. Activation of Mouse T Cells 1) Start with 8 × 104 purified T cells in 100-200 µl medium in a 96-well tissue culture plate. 2) Add 2 µl Dynabeads Mouse T-Activator CD3/CD
T-Cell Activation Using mAb to CD3
splenic T-cells and human peripheral T cells stimulated via CD3. Critical parameters include cell density, antibody titer and activation kinetics. Materials 1X sterile PBS Anti-mouse CD3e, Clone 145-2C11 (Functional Grade, Cat. No. 16
技术资料










