产品封面图
文献支持

Capan-2人胰腺癌细胞

收藏
  • ¥1350
  • 中乔新舟已认证
  • 中国
  • ZQ0923
  • 2026年01月02日
    avatar
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 文献和实验
    • 技术资料
    • 库存

      100

    • 供应商

      中乔新舟

    • 品系

      细胞系

    • 运输方式

      常温

    • 年限

      液氮长期

    • 生长状态

      贴壁生长

    • 规格

      T25

    产品名称

    Capan-2人胰腺癌细胞

    货号

    ZQ0923

    产品介绍

    Capan-2是一种人胰腺癌细胞系,起源于1975年从一位56岁白人男性胰腺癌患者的胰腺组织中分离出来。它源自肝脏的转移部位,表明其起源于继发性肿瘤,这使得它对于转移过程和胰腺癌生物学的研究特别有价值。这些细胞表现出上皮形态,并已广泛用于研究胰腺癌、耐药性和肿瘤生物学。这种细胞系具有多边形形态,属于假三倍体,其主要染色体数模态为69,但也存在范围在65至74之间的变异 。

    Capan-2 细胞已知表达 Kirsten 大鼠肉瘤病毒癌基因同源物 (KRAS) 的突变形式,这是胰腺癌中的常见突变,这使它们成为研究 KRAS 驱动的肿瘤发生的强大模型。此外,它们的特征是肿瘤抑制基因 p53 突变的表达,并观察到表现出染色体不稳定性,这是与癌症进展和治疗反应相关的关键特征。该细胞系已用于许多研究,包括评估化疗效果、探索癌症进展的分子途径以及开发靶向治疗策略。

    注意事项:

    (1)capan-2 细胞呈块片状聚集生长,细胞胞体黑点较多是正常现象。
    (2)细胞复苏需要5-7天可传代,传代后细胞需要48小时后才可换液操作,每两天换液一次。

    种属

    性别/年龄

    男/56岁

    组织

    胰腺

    疾病

    腺癌

    细胞类型

    肿瘤细胞  

    形态学

    多边形上皮样, 贴壁生长

    生长方式

    贴壁

    倍增时间

    大约120~168小时  

    培养基和添加剂

    RPMI-1640(中乔新舟 货号:ZQ-200)+10%胎牛血清(中乔新舟 货号:ZQ0500)+1%P/S(中乔新舟  货号:CSP006)

    推荐完全培养基货号

    ZM0923

    生物安全等级

    BSL-1

    STR位点信息

    Amelogenin: X

    CSF1PO: 11,12
    D13S317: 11,12
    D16S539: 9,13
    D5S818: 11,12
    D7S820: 9,11
    TH01: 9.3
    TPOX: 8
    vWA: 17
    D3S1358: 17,18
    D21S11: 31
    D18S51: 13
    Penta_E: 11
    Penta_D: 13,15
    D8S1179: 12,13
    FGA: 21,24
    D19S433: 13,15
    D2S1338: 19,25

     

    培养条件

    95%空气,5%二氧化碳;37℃

    抗原表达/受体表达

     ***

    基因表达

     ***

    保藏机构

    ATCC; HTB-80 BCRJ; 0060 

    供应限制

    仅供科研使用

     

    上海中乔新舟生物科技有限公司成立于2011年,历经十多年发展,主要专注于细胞生物学产品的研究和开发,专注于为药企、各类科研机构及CRO企业提供符合标准规范的细胞培养服务、细胞培养基、细胞检测试剂盒、细胞培养试剂,胎牛血清和细胞生物学技术服务等。

    公司一直致力于为高等院校、研究机构、医院、CRO及CDMO企业提供细胞培养完整解决方案,这些产品旨在满足细胞培养的多样需求,确保实验和研究的有效进行。引用中乔新舟(ZQXZBIO)产品和服务的文献超数千篇。

    产品细节图片1

    产品服务

    细胞资源:原代细胞、细胞株、干细胞、示踪细胞、耐药株细胞、永生化细胞等基因工程细胞。

    试剂产品:胎牛血清、完全培养基(适用于原代细胞及细胞株)、无血清培养基、基础培养基、细胞转染试剂、重组因子、胰酶和双抗等等细胞培养所有实验相关产品。

    技术服务:稳转株构建、原代细胞分离、特殊培养基定制服务、细胞检测等。

    产品细节图片2

    目前产品已经畅销国内30多个省市,与客户建立长期的合作伙伴关系,共同实现成功。全体员工将不懈努力,继续为科研人员提供优良的产品和服务,致力成为全球细胞培养领域的参与者。

    产品细节图片3

    企业愿景

    致力于成为国内细胞培养基产业的佼佼者,生物医药领域上游原材料的优良提供商。

    企业使命

    成长为专业细胞系及原代细胞培养供应商、专业细胞培养基及培养试剂生产商。

    企业荣誉

    产品细节图片4

    产品细节图片5

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献

     

    PubMed=6935474; DOI=10.1093/jnci/66.2.239
    Wright W.C., Daniels W.P., Fogh J.
    Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.
    J. Natl. Cancer Inst. 66:239-247(1981)

     

    PubMed=7459858
    Rousset M., Zweibaum A., Fogh J.
    Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
    Cancer Res. 41:1165-1170(1981)

     

    PubMed=6582512; DOI=10.1073/pnas.81.2.568
    Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
    Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
    Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984)

     

    PubMed=3019537
    Kyriazis A.A., Kyriazis A.P., Sternberg C.N., Sloane N.H., Loveless J.D.
    Morphological, biological, biochemical, and karyotypic characteristics of human pancreatic ductal adenocarcinoma Capan-2 in tissue culture and the nude mouse.
    Cancer Res. 46:5810-5815(1986)

     

    PubMed=3518877; DOI=10.3109/07357908609038260
    Fogh J.
    Human tumor lines for cancer research.
    Cancer Invest. 4:157-184(1986)

     

    PubMed=1764370; DOI=10.1038/bjc.1991.467
    Barton C.M., Staddon S.L., Hughes C.M., Hall P.A., O'Sullivan C., Kloppel G., Theis B., Russell R.C.G., Neoptolemos J., Williamson R.C.N., Lane D.P., Lemoine N.R.
    Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer.
    Br. J. Cancer 64:1076-1082(1991)

     

    PubMed=1630814
    Ruggeri B., Zhang S.-Y., Caamano J., DiRado M., Flynn S.D., Klein-Szanto A.J.P.
    Human pancreatic carcinomas and cell lines reveal frequent and multiple alterations in the p53 and Rb-1 tumor-suppressor genes.
    Oncogene 7:1503-1511(1992)

     

    PubMed=8426738
    Kalthoff H., Schmiegel W.H., Roeder C., Kasche D., Schmidt A., Lauer G., Thiele H.-G., Honold G., Pantel K., Riethmuller G., Scherer E., Maurer J., Maacke H., Deppert W.
    p53 and K-RAS alterations in pancreatic epithelial cell lesions.
    Oncogene 8:289-298(1993)

     

    PubMed=7809022; DOI=10.1097/00006676-199409000-00018
    Sumi S., Beauchamp R.D., Townsend C.M. Jr., Pour P.M., Ishizuka J., Thompson J.C.
    Lovastatin inhibits pancreatic cancer growth regardless of RAS mutation.
    Pancreas 9:657-661(1994)

     

    PubMed=7961102; DOI=10.1111/j.1349-7006.1994.tb02898.x
    Suwa H., Yoshimura T., Yamaguchi N., Kanehira K., Manabe T., Imamura M., Hiai H., Fukumoto M.
    K-ras and p53 alterations in genomic DNA and transcripts of human pancreatic adenocarcinoma cell lines.
    Jpn. J. Cancer Res. 85:1005-1014(1994)

     

    PubMed=7972006; DOI=10.1073/pnas.91.23.11045
    Okamoto A., Demetrick D.J., Spillare E.A., Hagiwara K., Hussain S.P., Bennett W.P., Forrester K., Gerwin B.I., Serrano M., Beach D.H., Harris C.C.
    Mutations and altered expression of p16INK4 in human cancer.
    Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994)

     

    PubMed=8026879; DOI=10.1002/ijc.2910580207
    Berrozpe G., Schaeffer J., Peinado M.A., Real F.X., Perucho M.
    Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer.
    Int. J. Cancer 58:185-191(1994)

     

    PubMed=8194712; DOI=10.1016/0016-5085(94)90422-7
    Simon B., Weinel R., Hohne M., Watz J., Schmidt J., Kortner G., Arnold R.
    Frequent alterations of the tumor suppressor genes p53 and DCC in human pancreatic carcinoma.
    Gastroenterology 106:1645-1651(1994)

     

    PubMed=8286197; DOI=10.1038/bjc.1994.24
    Lohr J.-M., Trautmann B., Gottler M., Peters S., Zauner I., Maillet B., Kloppel G.
    Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins.
    Br. J. Cancer 69:144-151(1994)

     

    PubMed=10027410; DOI=10.1016/S0002-9440(10)65298-4
    Ghadimi B.M., Schrock E., Walker R.L., Wangsa D., Jauho A., Meltzer P.S., Ried T.
    Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.
    Am. J. Pathol. 154:525-536(1999)

     

    PubMed=11169957; DOI=10.1002/1097-0215(200002)9999:9999<::AID-IJC1014>3.0.CO;2-U
    Wallrapp C., Hahnel S., Boeck W., Soder A., Mincheva A., Lichter P., Leder G., Gansauge F., Sorio C., Scarpa A., Gress T.M.
    Loss of the Y chromosome is a frequent chromosomal imbalance in pancreatic cancer and allows differentiation to chronic pancreatitis.
    Int. J. Cancer 91:340-344(2001)

     

    PubMed=11169959; DOI=10.1002/1097-0215(200002)9999:9999<::AID-IJC1049>3.0.CO;2-C
    Sirivatanauksorn V., Sirivatanauksorn Y., Gorman P.A., Davidson J.M., Sheer D., Moore P.S., Scarpa A., Edwards P.A.W., Lemoine N.R.
    Non-random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping.
    Int. J. Cancer 91:350-358(2001)

     

    PubMed=11668190; DOI=10.1177/002215540104901105
    Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.
    Immunocytochemical analysis of cell lines derived from solid tumors.
    J. Histochem. Cytochem. 49:1369-1378(2001)

     

    PubMed=12692724; DOI=10.1007/s00428-003-0784-4
    Sipos B., Moser S., Kalthoff H., Torok V., Lohr J.-M., Kloppel G.
    A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform.
    Virchows Arch. 442:444-452(2003)

     

    PubMed=12800145; DOI=10.1002/gcc.10218
    Adelaide J., Huang H.-E., Murati A., Alsop A.E., Orsetti B., Mozziconacci M.-J., Popovici C., Ginestier C., Letessier A., Basset C., Courtay-Cahen C., Jacquemier J., Theillet C., Birnbaum D., Edwards P.A.W., Chaffanet M.
    A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.
    Genes Chromosomes Cancer 37:333-345(2003)

     

    PubMed=14695172
    Iacobuzio-Donahue C.A., Ashfaq R., Maitra A., Adsay N.V., Shen-Ong G.L.-C., Berg K., Hollingsworth M.A., Cameron J.L., Yeo C.J., Kern S.E., Goggins M.G., Hruban R.H.
    Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.
    Cancer Res. 63:8614-8622(2003)

     

    PubMed=15126341; DOI=10.1158/0008-5472.CAN-03-3159
    Heidenblad M., Schoenmakers E.F.P.M., Jonson T., Gorunova L., Veltman J.A., van Kessel A.G., Hoglund M.
    Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.
    Cancer Res. 64:3052-3059(2004)

     

    PubMed=15367885; DOI=10.1097/00006676-200410000-00004
    Loukopoulos P., Kanetaka K., Takamura M., Shibata T., Sakamoto M., Hirohashi S.
    Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity.
    Pancreas 29:193-203(2004)

     

    PubMed=15688027; DOI=10.1038/sj.onc.1208383
    Heidenblad M., Lindgren D., Veltman J.A., Jonson T., Mahlamaki E.H., Gorunova L., van Kessel A.G., Schoenmakers E.F.P.M., Hoglund M.
    Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.
    Oncogene 24:1794-1801(2005)

     

    PubMed=15770730; DOI=10.3748/wjg.v11.i10.1521
    Ma J.-H., Patrut E., Schmidt J., Knaebel H.-P., Buchler M.W., Marten A.
    Synergistic effects of interferon-alpha in combination with chemoradiation on human pancreatic adenocarcinoma.
    World J. Gastroenterol. 11:1521-1528(2005)

     

    PubMed=18298655; DOI=10.1111/j.1582-4934.2008.00289.x
    Pilarsky C., Ammerpohl O., Sipos B., Dahl E., Hartmann A., Wellmann A., Braunschweig T., Lohr J.-M., Jesenofsky R., Friess H., Wente M.N., Kristiansen G., Jahnke B., Denz A., Ruckert F., Schackert H.K., Kloppel G., Kalthoff H., Saeger H.-D., Grutzmann R.
    Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling.
    J. Cell. Mol. Med. 12:2823-2835(2008)

     

    PubMed=18380791; DOI=10.1111/j.1349-7006.2008.00779.x
    Suzuki A., Shibata T., Shimada Y., Murakami Y., Horii A., Shiratori K., Hirohashi S., Inazawa J., Imoto I.
    Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.
    Cancer Sci. 99:986-994(2008)

     

     

    CLPUB00416

    Oberlin L.
    Treatment of pancreatic carcinoma cell lines in vitro and vivo with a monoclonal antibody against the transferrin receptor.
    Thesis VMD (2009), Justus-Liebig-Universitat Giessen, Germany

     

     

    DOI=10.4172/jpb.1000057
    Yamada M., Fujii K., Koyama K., Hirohashi S., Kondo T.
    The proteomic profile of pancreatic cancer cell lines corresponding to carcinogenesis and metastasis.
    J. Proteomics Bioinformatics 2:1-18(2009)

     

    PubMed=20164919; DOI=10.1038/nature08768
    Bignell G.R., Greenman C.D., Davies H., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
    Signatures of mutation and selection in the cancer genome.
    Nature 463:893-898(2010)

     

    PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458
    Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
    A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
    Cancer Res. 70:2158-2164(2010)

     

    PubMed=20418756; DOI=10.1097/MPA.0b013e3181c15963
    Deer E.L., Gonzalez-Hernandez J., Coursen J.D., Shea J.E., Ngatia J., Scaife C.L., Firpo M.A., Mulvihill S.J.
    Phenotype and genotype of pancreatic cancer cell lines.
    Pancreas 39:425-435(2010)

     

    PubMed=22460905; DOI=10.1038/nature11003
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

     

    PubMed=22585861; DOI=10.1158/2159-8290.CD-11-0224
    Marcotte R., Brown K.R., Suarez Saiz F.J., Sayad A., Karamboulas K., Krzyzanowski P.M., Sircoulomb F., Medrano M., Fedyshyn Y., Koh J.L.-Y., van Dyk D., Fedyshyn B., Luhova M., Brito G.C., Vizeacoumar F.J., Vizeacoumar F.S., Datti A., Kasimer D., Buzina A., Mero P., Misquitta C., Normand J., Haider M., Ketela T., Wrana J.L., Rottapel R., Neel B.G., Moffat J.
    Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
    Cancer Discov. 2:172-189(2012)

     

    PubMed=24700732; DOI=10.1002/humu.22556
    Leroy B., Girard L., Hollestelle A., Minna J.D., Gazdar A.F., Soussi T.
    Analysis of TP53 mutation status in human cancer cell lines: a reassessment.
    Hum. Mutat. 35:756-765(2014)

    相关实验
    • 零基础菜鸟:如何快速写出高质量的 SCI 论文题目和摘要

      一、如何翻译出好标题?1、拆分关键成纤维细胞源性外泌体-miR- 520b 作为潜在的胰腺癌治疗手段2、理清关键词成纤维细胞源性外泌体-miR- 520b 作为潜在的胰腺癌治疗手段纤维细胞能够释放外泌体,外泌体中的 miR- 520b 能够影响胰腺癌细胞。3、百度学术模仿提取核心关键词核心关键词搜索影响因子查询网站http://www.letpub.com.cn/index.php?page = journalapp&view = search1、输入核心关键词2、选择「SCI 索引」条目

    • 为了逃避免疫攻击,癌细胞又出新招!Cancer Cell 发现连胶原蛋白也「叛变」了……

      binds to a3b1 integrin and affects tumor microbiome and immunity to promote pancreatic cancer 的研究性论文,发现胰腺癌细胞产生的 I 型胶原(Col1)蛋白是一种异常的同源三聚体变体,具有致癌特性。癌细胞中 Col1 同源三聚体的缺失可抑制肿瘤进展并重塑肿瘤微生物组,增强 T 细胞浸润,使抗 PD-1 免疫治疗更有效。 图片来源:Cancer Cell 研究内容 胰腺癌细胞中存在特异性胶原

    • 有氧运动真的能抗癌!Cancer Cell:一周 5 次、每次 30 分钟,就可助力免疫系统杀死癌细胞

      胰腺癌(PDAC)素有「癌王」之称, 据神刊 CA:A Cancer Journal for Clinicians 发布的数据显示,胰腺癌发病率低而死亡率却高居所有肿瘤中第三,一直以来科学家都对它束手无策。然而,最新发表在 Cancer Cell 上的文章却发现,简单的有氧运动就能提高机体对胰腺癌细胞的免疫杀伤! 图 1:小鼠运动模型(图片来源:Cancer Cell) 2022 年 6 月 3 日,来自美国纽约大学、MD 安德森医学中心的研究工作者在 Cancer Cell 在线

    图标技术资料

    暂无技术资料 索取技术资料

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥1400
    上海酶研生物科技有限公司
    2025年12月30日询价
    询价
    吉奥蓝图(广东)生命科学技术中心
    2025年08月09日询价
    ¥1200
    上海觅拓生物科技有限公司
    2025年06月24日询价
    询价
    上海钦诚生物科技有限公司
    2025年05月20日询价
    ¥1500
    武汉尚恩生物技术有限公司
    2025年11月11日询价
    文献支持
    Capan-2人胰腺癌细胞
    ¥1350