产品封面图

全身体积描记系统(猴)

收藏
  • 询价
  • 塔望科技
  • WBP.
  • 上海
  • 2026年01月19日
    avatar
  • 企业认证

    • 详细信息
    • 文献和实验
    • 技术资料
    • 库存

      1

    • 国食药监械注册号

      /

    • 保修期

      1年

    • 现货状态

    • 供应商

      塔望科技

    • 规格

      咨询电话:021-51537683/15221725700

    产品描述

    无约束全身体积描记法(whole-bodyplethysmograph,WBP)可以对清醒自由活动的大动物进行肺功能及气道反应相关的测试,避免了创伤性气管切开术及麻醉的影响,使实验过程简便快捷,并适合长期跟踪研究。

    塔望科技开发的大动物全身体积描记系统,可用于猴的测量。测量时可直接将猴椅放入描记器内,通过软件可实时测量猴子的呼吸参数。

     

    产品特点

     

    · 适用动物:猴

    · 不需要做手术,操作简单

    · 可在动物在自然状态下呼吸的研究以及长期跟踪实验,适合进行药物初筛

    · 具有药物气溶胶雾化模块

    · 具有自动标定功能

    · 可选配测量心电、血压、体温、心率等指标,可与植入式遥测设备联合使用

    · 具有分析软件,数据可保存至excel或txt格式

     

     

    检测参数

    Ti:吸气时间(s)

    Te:呼气时间(s)

    PIF:最大吸气流速(ml/s)

    PEF:最大呼气流速(ml/s)

    Volbal:吸气时间/呼气时间

    F:呼吸频率(次/min)

    Vt:潮气量(ml)

    Mv:分钟通气量(ml)

    AV:累积体积(ml)

    EF50:呼出50%气量时对应的呼气流速(ml/s)

    EIP:吸气峰值压力(仅在侵入式法测量时有效)

    EEP:呼气峰值压力(仅在侵入式法测量时有效)

    TR:松弛时间

    PenH:增强呼气间歇(enhanced pause)

    Rpef:相对时间

     

    适用领域

    • 各种呼吸疾病研究,如:哮喘、肺纤维化、肺损伤、ARDS、肺癌等

    • 安全药理:药物对呼吸系统的影响

    • 睡眠呼吸:监测动物低通气、阻塞性呼吸暂停等

    • 环境毒理:环境污染物对动物呼吸的影响

    • 吸入式毒理:染毒物质对呼吸系统的毒性影响

    • 高原医学:高原环境对呼吸系统的影响

    • 其它需要对呼吸参数评价的场合

     

    *我公司可以根据客户的特殊应用、特殊需求提供功能定制服务,也可以提供相关的实验服务,详情请来电咨询。

    • [1] Zhou J W, Bai Y, Guo J Q, et al. Peroxiredoxin 4 as a switch regulating PTEN/AKT axis in alveolar macrophages activation[J]. Signal Transduction and Targeted Therapy (IF 52.7), 2025, 10(1): 352.
      [2] Jiang C, Huang H, Yang X, et al. Targeting mitochondrial dynamics of morphin-responsive dopaminergic neurons ameliorates opiate withdrawal[J]. The Journal of Clinical Investigation (IF 19.5), 2024.
      [3] Wang Z, Miao Z, Cao Z, et al. Mild Hyperthermia‐Assisted Coaxial Electrospun Nanofiber Patches for Epicutaneous Allergen‐Specific Immunotherapy[J]. Advanced Functional Materials (IF 19.0), 2025: e09955.
      [4] Dong S, Fang H, Zhu J, et al. Inhalable siRNA Targeting IL-11 Nanoparticles Significantly Inhibit Bleomycin-Induced Pulmonary Fibrosis[J]. ACS nano (IF 15.8), 2025.
      [5] Chen J, Wang J, Zheng W, et al. Brain–cervical lymph node crosstalk contributes to brain injury induced by subarachnoid hemorrhage in mice[J]. Nature Communications (IF 15.7), 2025, 16(1): 8551.
      [6] Wang Y, Zhao Q, Zhang Q, et al. Targeted Delivery of CNS‐Specific Hesperidin as a Leptin Sensitizer for Treating Obesity‐Associated Sleep‐Disordered Breathing[J]. Advanced Science (14.1), 2025, 12(45): e06182.
      [7] Wang Z, Lu X, Wu L, et al. Co-delivery of targeted hypoallergens and resiquimod powders using silk fibroin microneedles for effective allergen-specific immunotherapy[J]. Theranostics (IF 13.3), 2025, 15(16): 8096.
      [8] Liu Y, Li G, Xiong A, et al. Fine particulate matter exacerbates asthma by activating STC2-mediated mitophagy through METTL3/YTHDF2-dependent m6A methylation[J]. Journal of Hazardous Materials (IF12.2), 2025: 138854.
      [9] Li H, Liu S, Dai W, et al. Pressure-sensitive multivesicular liposomes as a smart drug-delivery system for high-altitude pulmonary edema[J]. Journal of Controlled Release (IF 11.5), 2024, 365: 301-316.
      [10] Hou T, Zhu L, Zhang Y, et al. Lipid peroxidation triggered by the degradation of xCT contributes to gasdermin D-mediated pyroptosis in COPD[J]. Redox Biology (IF 10.1), 2024, 77: 103388.
      [11] Luo L, Qin Z, Chen M, et al. γ-Aminobutyric acid–mediated parafacial zone: Integrating consciousness and respiratory control in sevoflurane anesthesia[J]. Anesthesiology (IF 9.1), 2025, 144(1): 116.
      [12] Duan L L, Cai P, Li Z S, et al. Role of the supramammillary nucleus–medial septum glutamatergic pathway in mediating the effects of isoflurane anesthesia[J]. Anesthesiology (IF 9.1), 2025, 143(4): 944.
      [13] Wei X, Cao X, Xu C, et al. Revolutionizing antibiotic therapy: polymyxin B and Fe2+-enriched liposomal carrier harness novel bacterial ferroptosis mechanism to combat resistant infections[J]. Journal of Pharmaceutical Analysis, 2025: 101293.
      [14] Zhou W, Zhou Y, Zhang S, et al. Gut microbiota’s role in high-altitude cognitive impairment: The therapeutic potential of Clostridium sp. supplementation[J]. Science China Life Sciences, 2025, 68(4): 1132-1148.
      [15] Liu J, Gao J, Xiong A, et al. Exploring Cistanche's therapeutic potential and molecular mechanisms in asthma treatment[J]. Phytomedicine, 2025, 136: 156265.
      [16] Wang X, Zhao H, Lin W, et al. Panax notoginseng saponins ameliorate LPS-induced acute lung injury by promoting STAT6-mediated M2-like macrophage polarization[J]. Phytomedicine, 2025, 139: 156513.
      [17] Jiang J, Ai S, Yuan C, et al. Dysfunction of cholinergic neuron in nucleus ambiguous aggravates sepsis-induced lung injury via a GluA1-dependment mechanism[J]. Brain, Behavior, and Immunity, 2025.
      [18] Xu Z, Wu Y, Zhao X, et al. Integrating nontargeted metabolomics and RNA sequencing of dexamethasone-treated and untreated asthmatic mice reveals changes of amino acids and aminoacyl-tRNA in group 2 innate lymphoid cells[J]. International Journal of Biological Macromolecules, 2024, 283: 137630.
      [19] Su J, Tu Y, Hu X, et al. Ambient PM2. 5 orchestrates M1 polarization of alveolar macrophages via activating glutaminase 1-mediated glutaminolysis in acute lung injury[J]. Environmental Pollution, 2025, 366: 125467.
      [20] Shan C, Li W, Sun Y, et al. Benzo (a) pyrene exposure aggravates airway remodeling in asthma by activating AhR-GDF15 pathway in epithelial cells[J]. Environmental Pollution, 2025: 127557.
      [21] Zhang M, Xu B, Li N, et al. All-Hydrocarbon Stapled Peptide Multifunctional Agonists at Opioid and Neuropeptide FF Receptors: Highly Potent, Long-Lasting Brain Permeant Analgesics with Diminished Side Effects[J]. Journal of Medicinal Chemistry, 2023.
      [22] Long Y, Ang Y, Chen W, et al. Hydrogen alleviates impaired lung epithelial barrier in acute respiratory distress syndrome via inhibiting Drp1-mediated mitochondrial fission through the Trx1 pathway[J]. Free Radical Biology and Medicine, 2024, 218: 132-148.
      [23] Wang Y, Liu X, Zhang Q, et al. Bioluminescence-optogenetics-mediated gene therapy in a sleep-disordered breathing mouse model[J]. Biomedicine & Pharmacotherapy, 2024, 178: 117159.
      [24] Tabynov K, Tailakova E, Rakhmatullayeva G, et al. Comparison of rArt v 1-based sublingual and subcutaneous immunotherapy in a murine model of asthma[J]. npj Vaccines, 2025, 10(1): 66.
      [25] Jiang Y, Zhang Y, Wang X, et al. Phosphatase PHLPP1 is an alveolar-macrophage-intrinsic transcriptional checkpoint controlling pulmonary fibrosis[J]. Cell Reports, 2025, 44(3).
      [26] Liu S, Chu J, Yin X, et al. The adeno associated viral vectored Dp12S vaccine effective alleviation of asthma symptoms in mice[J]. npj Vaccines, 2025.
      [27] Jin M, Liu J, Shao M, et al. Chitosan Nanoparticles for Pulmonary Delivery of Curcumin/Nintedanib to Treat Pulmonary Fibrosis[J]. International Journal of Nanomedicine, 2025: 12959-12973.
      [28] Xiong A, He X, Liu S, et al. Oxidative stress-mediated activation of FTO exacerbates impairment of the epithelial barrier by up-regulating IKBKB via N6-methyladenosine-dependent mRNA stability in asthmatic mice exposed to PM2. 5[J]. Ecotoxicology and Environmental Safety, 2024, 272: 116067.
      [29] Jia X, Liu S, Sun C, et al. METTL16 controls airway inflammations in smoking-induced COPD via regulating glutamine metabolism[J]. Ecotoxicology and Environmental Safety, 2025, 289: 117518.
      [30] Lu X, Tan Z X, Yao Y X, et al. Inhaling arsenic aggravates airway hyperreactivity by upregulating PNEC-sourced 5-HT in OVA-induced allergic asthma[J]. Ecotoxicology and Environmental Safety, 2025, 290: 117764.
      [31] Li Q, Ang Y, Zhou Q, et al. Coral calcium hydride promotes peripheral mitochondrial division and reduces AT-II cells damage in ARDS via activation of the Trx2/Myo19/Drp1 pathway[J]. Journal of Pharmaceutical Analysis, 2024: 101039.
      [32] Zhang X, Hu T, Yu X, et al. Human umbilical cord mesenchymal stem cells improve lung function in chronic obstructive pulmonary disease rat model through regulating lung microbiota[J]. Stem Cells, 2024: sxae007.
      [33] Akhtemova N, Sergazina A, Bolatbekov T, et al. The role of major allergens Art v 1 and Art v 3 in Artemisia pollen-induced asthma: a mouse model study[J]. Frontiers in Immunology, 2025, 16: 1590791.
      [34] Tabynov K, Nedushenko I, Tailakova E, et al. Intranasal monoclonal antibodies to mugwort pollen reduce allergic inflammation in a mouse model of allergic rhinitis and asthma[J]. Frontiers in Immunology, 2025, 16: 1595659.
      [35] Zhang Y, Jiang M, Xiong Y, et al. Integrated analysis of ATAC-seq and RNA-seq unveils the role of ferroptosis in PM2. 5-induced asthma exacerbation[J]. International Immunopharmacology, 2023, 125: 111209.
      [36] Yao W, Huang S X, Zhang L, et al. Central amygdala somatostatin neurons modulate stress-induced sleep-onset insomnia[J]. Communications Biology, 2025, 8(1): 381.
      [37] Lin Y, Wu Y, Ma F, et al. Exploration of the mechanism of Qi-Xian decoction in asthmatic mice using metabolomics combined with network pharmacology[J]. Frontiers in Molecular Biosciences, 2023, 10.
      [38] Yang D, Li Y, Liu T, et al. IL‐1β promotes IL‐17A production of ILC3s to aggravate neutrophilic airway inflammation in mice[J]. Immunology, 2025, 176(1): 16-32.
      [39] Zhang Y, Yang Y, Liang H, et al. Nobiletin, as a Novel PDE4B Inhibitor, Alleviates Asthma Symptoms by Activating the cAMP-PKA-CREB Signaling Pathway[J]. International Journal of Molecular Sciences, 2024, 25(19): 10406.
      [40] Tsentsevitsky A N, Sibgatullina G V, Odoshivkina Y G, et al. Functional and Structural Changes in Diaphragm Neuromuscular Junctions in Early Aging[J]. International Journal of Molecular Sciences, 2024, 25(16): 8959.
      [41] Ma J, Ni Z, Chen Q, et al. Exploring the kidney-tonifying effect of Qi-Xian decoction for asthma treatment by modulating the proliferation and migration of endogenous BMSCs[J]. Chinese Journal of Natural Medicines, 2025, 23(12): 100009.
      [42] Liu K, Gu Y, Gu S, et al. Trim27 aggravates airway inflammation and oxidative stress in asthmatic mice via potentiating the NLRP3 inflammasome[J]. International Immunopharmacology, 2024, 134: 112199.
      [43] Yuan Z, Wang Q, Tan Y, et al. Methylprednisolone alleviates lung injury in sepsis by regulating miR-151-5p/USP38 pathway[J]. International Immunopharmacology, 2024, 138: 112548.
      [44] Wang Y, Peng M, Yang X, et al. Total alkaloids in Fritillaria cirrhosa D. Don alleviate OVA-induced allergic asthma by inhibiting M2 macrophage polarization[J]. Journal of Ethnopharmacology, 2025, 337: 118935.
      [45] He J, Li J, Lin Q, et al. Anti-CD20 treatment attenuates Th2 cell responses: implications for the role of lung follicular mature B cells in the asthmatic mice[J]. Inflammation Research, 2024, 73(3): 433-446
      [46] Liu Y, Tang A, Liu M, et al. Tuberostemonine may enhance the function of the SLC7A11/glutamate antiporter to restrain the ferroptosis to alleviate pulmonary fibrosis[J]. Journal of Ethnopharmacology, 2024, 318: 116983.
      [47] Chen N, Xie Q M, Song S M, et al. Dexamethasone protects against asthma via regulating Hif-1α-glycolysis-lactate axis and protein lactylation[J]. International Immunopharmacology, 2024, 131: 111791.
      [48] Li R, Zhang W, Huang B, et al. Dayuan Yin alleviates symptoms of HCoV-229E-induced pneumonia and modulates the Ras/Raf1/MEK/ERK pathway[J]. Natural Products and Bioprospecting, 2024, 14(1): 58.
      [49] Wei M, Song M, Lin L, et al. Mechanism of Keke tablets in treating post-infectious cough following influenza A virus infection based on network pharmacology, molecular docking, molecular dynamics and in vivo experiments[J]. International Immunopharmacology, 2025, 162: 115123.
      [50] Gong X T, Li Z S, Chen Z L, et al. Basal forebrain-ventral tegmental area glutamatergic pathway promotes emergence from isoflurane anesthesia in mice[J]. Journal of Neuroscience, 2025.
      [51] Cheng S, Huang H, Zhang Z, et al. Pulmonary delivery of excipient-free tobramycin DPIs for the treatment of Pseudomonas aeruginosa lung infection with CF[J]. Frontiers in Pharmacology, 2025, 16: 1528905.
      [52] Yan C X, Sun K, Zhu X, et al. Oligomeric proanthocyanidins mitigate acute lung injury by inhibiting NETs and inflammation via the gut-lung axis[J]. Journal of Functional Foods, 2024, 118: 106272.
      [53] Liu Y, Wang X, Wei J, et al. Comprehensive profiling of amino acids and derivatives in biological samples: A robust UHPLC-MS/MS method for investigating acute lung injury[J]. Journal of Chromatography A, 2024, 1721: 464816.
      [54] Zakyrjanova G F, Tsentsevitsky A N, Matigorova V A, et al. Cholesterol-lowering treatment suppresses neuromuscular transmission via presynaptic mechanism at the mouse diaphragm muscle[J]. Neurochemical Research, 2025, 50(5): 1-23.
      [55] Zhang J, Huang M, Zhou J, et al. Bmi-1 overexpression mitigates vitamin D deficiency-induced pulmonary fibrosis via TIME pathway[J]. Cellular Signalling, 2025: 112180.
      [56] Sun G, Hao W, Li Q, et al. Therapeutic and prophylactic effects of Qipian on COPD in mice: the role of lung and gut microbiota[J]. Microbiology Spectrum, 2025: e01969-24.
      [57] Khaziev A N, Tsentsevitsky A N, Fedorov N S, et al. Exogenous nanomolar zinc ion (Zn2+) as a negative modulator of neuromuscular transmission via presynaptic mechanism in mouse diaphragm[J]. BioMetals, 2025: 1-24.
      [58] Fu X, Wang L T, Xu Q, et al. Necroptosis Inhibition Preserves Diaphragm Function in Experimental Sepsis[J]. The American Journal of Pathology, 2025, 195(12): 2373-2386.
      [59] Zheng R, Yang W, Yan J, et al. DNAH10 mutation cause primary ciliary dyskinesia with defects of IDAf complex assembly and lung fibrosis manifestation[J]. Orphanet Journal of Rare Diseases, 2025, 20(1): 469.
      [60] Chen X Y, Wang L, Ma X, et al. Development of fentany-specific monoclonal antibody (mAb) to antagonize the pharmacological effects of fentany[J]. Toxicology and Applied Pharmacology, 2024, 486: 116918.
      [61] Han C H, Zhang P X, Liu Y, et al. Inhibition of renin-angiotensin system attenuates type I alveolar epithelial cell necroptosis in rats after hyperbaric hyperoxic exposure[J]. Frontiers in Medicine, 2025, 12: 1521729.
      [62] Yin, Lijun; Guan, Zhenbiao; Xu, Jiajun; Yu, Xuhua; Wen, Yukun; Wang, Shifeng; Liu, Wenwu. Assessment of hyperbaric hyperoxic lung injury in rats. Medical Gas Research 15(1):p 129-131, March 2025. | DOI: 10.4103/mgr.MEDGASRES-D-24-00030 
      [63] Yin L, Wen Y, Liang Z, et al. Lung function and blood gas of rats after different protocols of hypobaric exposure[J]. Medical Gas Research, 2025, 15(1): 180-187.
      [64] Aisanjiang M, Dai W, Wu L, et al. Ameliorating lung fibrosis and pulmonary function in diabetic mice: Therapeutic potential of mesenchymal stem cell[J]. Biochemical and Biophysical Research Communications, 2024, 737: 150495.
      [65] Jia X, Sun J, Zhuo Q, et al. Effect of the NLRP3 inflammasome on increased hypoxic ventilation response after CIH exposure in mice[J]. Respiratory Physiology & Neurobiology, 2024, 321: 104204.
      [66] Kuznetsova E A, Fedorov N S, Zakyrjanova G F, et al. 25-Hydroxycholesterol as a negative regulator of diaphragm muscle contractions via estrogen receptor and Ca2+-dependent pathway[J]. Histochemistry and Cell Biology, 2025, 163(1): 1-15.
      [67] Wu Y, Dai T, Qin J, et al. Regulation of Dendritic Cell Function by RFX5 through Interaction with HDAC2 and Its Mechanism in Pediatric Asthma[J]. Biocell, 2025, 49(4).
      [68] Xu X, Nie X, Zhang W, et al. A brainstem circuit controls cough-like airway defensive behaviors in mice[J]. bioRxiv, 2024: 2024.09. 08.611924.
      [69] Li W, Wu L, Lu X, et al. Prenatal Benzo [A] Pyrene Exposure Exacerbates Ova-Induced Asthma in Offspring Mice[J]. Available at SSRN 5265037.

    型号说明

     

    名称

    型号

    说明

    单位

    大动物全身体积描记系统

    WBP-P

    适用于猕猴、食蟹猴

    大动物全身体积描记系统

    WBP-T

    适用于兔子

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    相关实验
    • 灵长目原猴亚目懒猴科蜂属的 1种。白天卷缩睡觉,行动缓慢,而且只能爬行,不会跳跃;不象一般猴类活泼,因而又称懒猴。 体型小,体长31~34.5厘米,体重680~1000克;尾长22~25厘米;牙齿36枚;头圆,吻短,眼大而向前,眼间距很窄,耳廓半圆而朝前;前后肢粗短,等长,手的大拇指和其他4指相距的角度甚大,第2指、趾极短或退化,除第2趾是爪形外,其他指、趾的末端有厚的肉垫和扁指甲;体毛短密,颜色变异很大,背部棕、棕红或灰色,背中央有一条褐色纵纹,至尾基部逐渐

    • 灵长目原猴亚目婴科唯一的属。因大多数体型很小而得名。模式种体长仅11.5~17米。其他种类体长不超过38厘米,尾长15~47.5厘米,体重80~1240克;外貌似松鼠;眼大;耳大,为膜质、活动时直立,休息时能像扇子一样折叠倒伏;被毛细软而密,无光泽,灰棕至褐色,腹面略浅淡;腿比臂大,足很长,指、趾的末端有大软垫,适于在表面光滑的物体上爬行,具扁的指、趾甲;颈部非常灵活,能向后回转180°;胸腹部各有1对乳头。 共6种分布于非洲南部。生活于热带雨林、 稀树草原和灌丛

    • 灵长目原猴亚目指科指属的 1种。因指和趾长(中指特长)而得名。 体型象大老鼠,体长36~44厘米,尾长50~60厘米,体重2千克;体毛粗长,深褐至黑色,脸和腹部毛基白色,颈部毛特长有白尖;尾比身体长,尾毛蓬松,形似扫帚,毛长达10厘米,黑或灰色;体纤细;头大吻钝;耳朵非常大,膜质;除大拇指和大脚趾是扁甲外,其他指、趾具尖爪;牙齿结构象鼠,只有20枚;四肢短,腿比臂长。分布于马达加斯加东部沿海森林。 栖息于热带雨林的大树枝或树干上,在树洞或树杈上筑球形巢

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    询价
    上海吉量软件科技有限公司
    2026年01月21日询价
    询价
    武汉一鸿科技有限公司
    2026年01月21日询价
    询价
    成都泰盟软件有限公司
    2026年01月18日询价
    询价
    赞德仪器有限公司
    2026年01月19日询价
    $10000
    北京普升达科贸有限公司
    2026年01月21日询价
    全身体积描记系统(猴)
    询价