M NEW ENGLAND
Bionabos.
CONTACT NEB ABOUT US

RELATED INFORMATION

- Request Technical Support

FAVORITE TOOLS

- Enzyme Finder
- NEBcutter
- NEBuffer Chart
- Double Digest Finder
- Isoschizomers
- DNA Sequences and Maps
- RebASE

SPECIAL
OFFERS

New England Biolabs

PRODUCTS
 TECHNICAL REFERENCE
 CUSTOMER SERVICE
 SITE MAP LITERATURE REQUEST INTERNATIONAL ORDERS FREEZER PROGRAM QUICK ORDER
 MY NEB
 ACCOUNT
 search
 \square gon

Home > Technical Reference > Restriction Endonucleases

Cleavage Close to the End of DNA Fragments (linearized vector)

Linearized vectors were incubated with the indicated enzymes (10 units $/ \mu \mathrm{g}$) for 60 minutes at the recommended incubation temperature and NEBuffer for each enzyme. Following ligation and transformation, cleavage efficiencies were determined by dividing the number of transformants from the digestion reaction by the number obtained from religation of the linearized DNA (typically 100-500 colonies) and subtracting from 100%. "Base Pairs from End" refers to the number of double-stranded base pairs between the recognition site and the terminus of the fragment; this number does not include the single-stranded overhang from the initial cut. Since it has not been demonstrated whether these single-stranded nucleotides contribute to cleavage efficiency, 4 bases should be added to the indicated numbers when designing PCR primers. Average efficiencies were rounded to the nearest whole number; experimental variation was typically within 10%. The numbers in parentheses refer to the number of independent trials for each enzyme tested (from Moreira, R. and Noren, C. (1995), Biotechniques, 19, 56-59).

Note: As a general rule, enzymes not listed below require 6 bases pairs on either side of their recognition site to cleave efficiently.
|A|B|E|H|K|M|N|P|S|X|

Enzyme	Base pairs from End	\% Cleavage Efficiency	Vector	I nitial Cut
AatII	$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$	$\begin{gathered} 88(2) \\ 100(2) \\ 95(2) \end{gathered}$	LITMUS 29 LITMUS 28 LITMUS 29	Ncol Ncol PinAI
Acc65	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 99(2) \\ & 75(3) \end{aligned}$	LITMUS 29 pNEB193	Spel Sacl
Afll	1	13 (2)	LITMUS 29	Stul
Agel	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 100(1) \\ & 100(2) \end{aligned}$	LITMUS 29 LITMUS 29	Xbal AatII
Apal	2	100 (1)	LITMUS 38	Spel
Ascl	1	97 (2)	pNEB193	BamHI
Avrlı	1	100 (2)	LITMUS 29	Sacl
BamHI	1	97 (2)	LITMUS 29	HindlıI
BgIII	3	100 (2)	LITMUS 29	Nsil
BsiWI	2	100 (2)	LITMUS 29	BssHII
BspEl	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 100(1) \\ & 8(2) \end{aligned}$	LITMUS 39 LITMUS 38	$\begin{aligned} & \hline \text { BsrGI } \\ & \text { BsrGI } \end{aligned}$
BsrGI	$\begin{gathered} 2 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 99(2) \\ & 88(2) \end{aligned}$	LITMUS 39 LITMUS 38	$\begin{gathered} \text { Sphl } \\ \text { BspEI } \end{gathered}$
BssHII	2	100 (2)	LITMUS 29	BsiWI
Eagl	2	100 (2)	LITMUS 39	Nhel
EcoRI	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 100(1) \\ 88(1) \\ 100(1) \end{gathered}$	LITMUS 29 LITMUS 29 LITMUS 39	Xhol Pstl Nhel

EcoRV	1	100 (2)	LITMUS 29	Pstl
HindIII	$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 90(2) \\ & 91(2) \\ & 0(2) \end{aligned}$	LITMUS 29 LITMUS 28 LITMUS 29	Ncol Ncol BamHI
Kasl	$\begin{gathered} 2 \\ 1 \end{gathered}$	$\begin{aligned} & 97(1) \\ & 93(1) \end{aligned}$	LITMUS 38 LITMUS 38	NgoMIV HindIII
Kpnl	$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 100(2) \\ & 100(2) \\ & 99(2) \end{aligned}$	LITMUS 29 LITMUS 29 pNEB193	Spel Sacl Sacl
Mlul	2	99 (2)	LITMUS 39	Eagl
Munl	2	100 (1)	LITMUS 39	NgoMIV
Ncol	2	100 (1)	LITMUS 28	HindIII
NgoMIV	2	100 (1)	LITMUS 39	Munl
Nhel	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 100(1) \\ & 82(1) \end{aligned}$	LITMUS 39 LITMUS 39	EcoRI Eagl
Notl	$\begin{aligned} & 7 \\ & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & 100(2) \\ & 100(1) \\ & 98(2) \end{aligned}$	Bluescript SK- Bluescript SK- Bluescript SK-	Spel Kspl Xbal
Nsil	$\begin{aligned} & 3 \\ & 3 \\ & 2 \end{aligned}$	$\begin{gathered} 100(2) \\ 77(4) \\ 95(2) \end{gathered}$	LITMUS 29 LITMUS 29 LITMUS 28	$\begin{gathered} \text { BssHII } \\ \text { BglII } \\ \text { BssHII } \end{gathered}$
Pacl	1	76 (3)	pNEB193	BamHI
Pmel	1	94 (2)	pNEB193	Pstl
Pstl	$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 98(1) \\ & 50(5) \\ & 37(3) \end{aligned}$	LITMUS 29 LITMUS 39 LITMUS 29	EcoRV HindIII EcoRI
Sacl	1	99 (2)	LITMUS 29	Avrll
Sall	$\begin{aligned} & 3 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 89(2) \\ & 23(2) \\ & 61(3) \end{aligned}$	LITMUS 39 LITMUS 39 LITMUS 38	Spel Sphl Sphl
Sfil	$\begin{aligned} & 9 \\ & 4 \\ & 1 \end{aligned}$	$\begin{aligned} & 81(2) \\ & 97(2) \\ & 93(2) \end{aligned}$	LITMUS 38 LITMUS 38 LITMUS 38	BamHI Mlul EcoRI
Spel	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 100(2) \\ & 100(2) \end{aligned}$	LITMUS 29 LITMUS 29	Acc65I KpnI
Sphl	$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 99(1) \\ & 97(1) \\ & 92(2) \end{aligned}$	LITMUS 39 LITMUS 39 LITMUS 38	Sall BsrGI Sall
Xbal	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 99(2) \\ & 94(1) \end{aligned}$	LITMUS 29 LITMUS 29	Agel PinAI
Xhol	1	97 (2)	LITMUS 29	EcoRI
Xmal	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 98(1) \\ & 92(1) \end{aligned}$	pNEB193 pNEB193	Ascl BssHII

[^0]华 NEW ENGLAND
Bionabos inc．
CONTACTNEB ABOUT US

RELATED INFORMATION

－Request Technical Support

FAVORITE TOOLS

－Enzyme Finder
－NEBcutter
－NEBuffer Chart
－Double Digest Finder
－Isoschizomers
－DNA Sequences and Maps
－REBASE

SPECIAL
OFFERS

New England Biolabs

PRODUCTS TECHNICAL REFERENCE
 CUSTOMER MY NEB SERVICE
 ACCOUNT
 search go m
 \square

Cleavage Close to the End of DNA Fragments （oligonucleotides）

To test the varying requirements restriction endonucleases have for the number of bases flanking their recognition sequences，a series of short，double－stranded oligonucleotides that contain the restriction endonuclease recognition sites（shown in red）were digested．This information may be helpful when choosing the order of addition of two restriction endonucleases for a double digest（a particular concern when cleaving sites close together in a polylinker），or when selecting enzymes most likely to cleave at the end of a DNA fragment．

The experiment was performed as follows： $0.1 \mathrm{~A}_{260}$ unit of oligonucleotide was phosphorylated using T4 polynucleotide kinase and γ－［32P］ATP． $1 \mu \mathrm{~g}$ of 5^{\prime}［ ${ }^{32} \mathrm{P}$ ］－labeled oligonucleotide was incubated at $20^{\circ} \mathrm{C}$ with 20 units of restriction endonuclease in a buffer containing 70 mM Tris－ $\mathrm{HCl}(\mathrm{pH} 7.6), 10 \mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM}$ DTT and NaCl or KCl depending on the salt requirement of each particular restriction endonuclease．Aliquots were taken at 2 hours and 20 hours and analyzed by 20% PAGE（ 7 M urea）．Percent cleavage was determined by visual estimate of autoradiographs．

As a control，self－ligated oligonucleotides were cleaved efficiently．Decreased cleavage efficiency for some of the longer palindromic oligonucleotides may be caused by the formation of hairpin loops．
｜A｜B｜C｜E｜H｜K｜M｜N｜P｜S｜X｜

Enzyme	Oligo Sequence	Chain Length	\％Cleavage	
			2 hr	20 hr
Accl	GGTCGACC	8	0	0
	CGGTCGACCG	10	0	0
	CCGGTCGACCGG	12	0	0
AfIIII	CACATGTG	8	0	0
	CCACATGTGG	10	＞90	＞90
	CCCACATGTGGG	12	＞90	＞90
Ascl	GGCGCGCC	8	＞90	＞90
	AGGCGCGCCT	10	＞90	＞90
	TTGGCGCGCCAA	12	＞90	＞90
Aval	CCCCGGGG	8	50	＞90
	CCCCCGGGGG	10	＞90	＞90
	TCCCCCGGGGGA	12	＞90	＞90
BamHI	CGGATCCG	8	10	25
	CGGGATCCCG	10	＞90	＞90
	CGCGGATCCGCG	12	＞90	＞90
BgIII	CAGATCTG	8	0	0
	GAAGATCTTC	10	75	＞90
	GGAAGATCTTCC	12	25	＞90
BssHII	GGCGCGCC	8	0	0
	AGGCGCGCCT	10	0	0
	TTGGCGCGCCAA	12	50	＞90

BstEII	GGGT(A/T)ACCC	9	0	10
BstXI	AACTGCAGAACCAATGCATTGG AAAACTGCAGCCAATGCATTGGAA CTGCAGAACCAATGCATTGGATGCAT	22 24 27	$\begin{gathered} 0 \\ 25 \\ 25 \end{gathered}$	$\begin{gathered} 0 \\ 50 \\ >90 \end{gathered}$
Clal	CATCGATG GATCGATC CCATCGATGG CCCATCGATGGG	8 8 10 12	$\begin{gathered} 0 \\ 0 \\ >90 \\ 50 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ >90 \\ 50 \end{gathered}$
EcoRI	GGAATTCC CGGAATTCCG CCGGAATTCCGG	8 10 12	$\begin{aligned} & >90 \\ & >90 \\ & >90 \end{aligned}$	$\begin{aligned} & >90 \\ & >90 \\ & >90 \end{aligned}$
Haellı	$\begin{gathered} \text { GGGGCCCC } \\ \text { AGCGGCCGCT } \\ \text { TTGCGGCCGCAA } \end{gathered}$	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{aligned} & >90 \\ & >90 \\ & >90 \end{aligned}$	$\begin{aligned} & >90 \\ & >90 \\ & >90 \end{aligned}$
HindIII	CAAGCTTG CCAAGCTTGG CCCAAGCTTGGG	8 10 12	$\begin{gathered} 0 \\ 0 \\ 10 \end{gathered}$	$\begin{gathered} \hline 0 \\ 0 \\ 75 \end{gathered}$
KpnI	GGGTACCC GGGGTACCCC CGGGGTACCCCG	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ >90 \\ >90 \end{gathered}$	$\begin{gathered} 0 \\ >90 \\ >90 \end{gathered}$
Mlua	$\begin{gathered} \text { GACGCGTC } \\ \text { CGACGCGTCG } \end{gathered}$	$\begin{gathered} 8 \\ 10 \end{gathered}$	$\begin{gathered} 0 \\ 25 \end{gathered}$	$\begin{gathered} 0 \\ 50 \end{gathered}$
Ncol	CCCATGGG CATGCCATGGCATG	8 14	$\begin{gathered} 0 \\ 50 \end{gathered}$	$\begin{gathered} 0 \\ 75 \end{gathered}$
Ndel	CCATATGG CCCATATGGG CGCCATATGGCG GGGTTTCATATGAAACCC GGAATTCCATATGGAATTCC GGGAATTCCATATGGAATTCCC	$\begin{gathered} 8 \\ 10 \\ 12 \\ 18 \\ 20 \\ 22 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 75 \\ 75 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ >90 \\ >90 \end{gathered}$
Nhel	$\begin{gathered} \text { GGCTAGCC } \\ \text { CGGCTAGCCG } \\ \text { CTAGCTAGCTAG } \end{gathered}$	8 10 12	$\begin{gathered} 0 \\ 10 \\ 10 \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 50 \end{gathered}$
Notl	TTGCGGCCGCAA ATTTGCGGCCGCTTTA AAATATGCGGCCGCTATAAA ATAAGAATGCGGCCGCTAAACTAT AAGGAAAAAAGCGGCCGCAAAAGGAAAA	$\begin{aligned} & 12 \\ & 16 \\ & 20 \\ & 24 \\ & 28 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 10 \\ 25 \\ 25 \end{gathered}$	$\begin{gathered} \hline 0 \\ 10 \\ 10 \\ 90 \\ >90 \end{gathered}$
Nsil	TGCATGCATGCA CCAATGCATTGGTTCTGCAGTT	12 22	$\begin{gathered} 10 \\ >90 \end{gathered}$	$\begin{aligned} & >90 \\ & >90 \end{aligned}$
Pacl	TTAATTAA GTTAATTAAC CCTTAATTAAGG	8 10 12	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 25 \\ >90 \end{gathered}$
Pmel	GTTTAAAC GGTTTAAACC GGGTTTAAACCC AGCTITGTTTAAACGGCGCGCCGG	$\begin{gathered} \hline 8 \\ 10 \\ 12 \\ 24 \end{gathered}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ 75 \end{gathered}$	$\begin{gathered} \hline 0 \\ 25 \\ 50 \\ >90 \end{gathered}$
Pstl	GCTGCAGC TGCACTGCAGTGCA AACTGCAGAACCAATGCATTGG AAAACTGCAGCCAATGCATTGGAA CTGCAGAACCAATGCATTGGATGCAT	$\begin{gathered} 8 \\ 14 \\ 22 \\ 24 \\ 26 \end{gathered}$	$\begin{gathered} 0 \\ 10 \\ >90 \\ >90 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 10 \\ >90 \\ >90 \\ 0 \end{gathered}$

Pvul	CCGATCGG ATCGATCGAT TCGCGATCGCGA	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ 10 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 10 \end{gathered}$
Sacl	CGAGCTCG	8	10	10
Sacll	GCCGCGGC TCCCCGCGGGGA	$\begin{gathered} 8 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ 50 \end{gathered}$	$\begin{gathered} 0 \\ >90 \end{gathered}$
Sall	GTCGACGTCAAAAGGCCATAGCGGCCGC GCGTCGACGTCTTGGCCATAGCGGCCGCGG ACGCGTCGACGTCGGCCATAGCGGCCGCGGAA	$\begin{aligned} & 28 \\ & 30 \\ & 32 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 10 \end{gathered}$	$\begin{gathered} 0 \\ 50 \\ 75 \end{gathered}$
Scal	GAGTACTC AAAAGTACTTTT	$\begin{gathered} 8 \\ 12 \end{gathered}$	$\begin{aligned} & 10 \\ & 75 \end{aligned}$	$\begin{aligned} & 25 \\ & 75 \end{aligned}$
Smal	CCCGGG CCCCGGGG CCCCCGGGGG TCCCCCGGGGGA	$\begin{gathered} 6 \\ 8 \\ 10 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 10 \\ >90 \end{gathered}$	$\begin{gathered} 10 \\ 10 \\ 50 \\ >90 \end{gathered}$
Spel	GACTAGTC GGACTAGTCC CGGACTAGTCCG CTAGACTAGTCTAG	$\begin{gathered} 8 \\ 10 \\ 12 \\ 14 \end{gathered}$	$\begin{gathered} 10 \\ 10 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} >90 \\ >90 \\ 50 \\ 50 \end{gathered}$
Sphl	GGCATGCC CATGCATGCATG ACATGCATGCATGT	$\begin{gathered} 8 \\ 12 \\ 14 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 10 \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 50 \end{gathered}$
Stul	$\begin{gathered} \text { AAGGCCTT } \\ \text { GAAGGCCTTC } \\ \text { AAAAGGCCTTTT } \end{gathered}$	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{aligned} & >90 \\ & >90 \\ & >90 \end{aligned}$	$\begin{aligned} & >90 \\ & >90 \\ & >90 \end{aligned}$
Xbal	CTCTAGAG GCTCTAGAGC TGCTCTAGAGCA CTAGTCTAGACTAG	$\begin{gathered} 8 \\ 10 \\ 12 \\ 14 \end{gathered}$	$\begin{gathered} 0 \\ >90 \\ 75 \\ 75 \end{gathered}$	$\begin{gathered} 0 \\ >90 \\ >90 \\ >90 \end{gathered}$
Xhol	$\begin{gathered} \text { CCTCGAGG } \\ \text { CCCTCGAGGG } \\ \text { CCGCTCGAGCGG } \end{gathered}$	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ 10 \\ 10 \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 75 \end{gathered}$
Xmal	CCCCGGGG CCCCCGGGGG CCCCCCGGGGGG TCCCCCCGGGGGGA	$\begin{gathered} 8 \\ 10 \\ 12 \\ 14 \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 50 \\ >90 \end{gathered}$	$\begin{gathered} 0 \\ 75 \\ >90 \\ >90 \end{gathered}$

Privacy, Limitations, Warranty, Disclaimer, Copyright and Trademark

产品价目表 产品资料 订货说明 各地代理 NEB 新产品 技术资料 NEBcutter HOME

综述

怎样建立酶切反应质量控制

限制性内切酶识别序列的十字索引
内切酶活性表
内切酶 $37^{\circ} \mathrm{C}$ 下的活性
内切酶PCR反应中的活性
内切酶的稀释兼容性
双酶切反应
内切酶在反应中的存活性
内切酶的热失活
星号活性
甲基化酶改变内切酶识别性寡核甘酸近末端位点的酶切线性载体近末端位点的酶切
切割超螺旋DNA
单链DNA的切割
Dam，Dcm和CpG甲基化
（新）
CpG甲基化对内切酶的影响 E．coli的dam／dcm甲基化酶切割后片段的平均长度创造新的酶切位点琼脂糖包埋法切割DNA位点优势效应大分子DNA图谱

遗传标记

NEB提供的菌株
其他E．coli菌株基因型
遗传密码表
氨基酸结构
DNA碱基对结构
核酸数据
同位素酸碱蛋白质数据
常见质粒中的基因产物

寡核苷酸近末端位点的酶切 （Cleavage Close to the End of DNA Fragments（ oligonucleotides））

为了解不同内切酶对识别位点以外最少保护碱基数目的要求，NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。实验结果对于确定双酶切顺序将会有帮助（比如在多接头上切割位点很接近时），或者当切割位点靠近DNA末端时也很有用。在本表中没有列出的酶，则通常需在识别位点两端至少加上 6 个保护碱基，以确保酶切反应的进行。

实验方法：用 Y－［32P］ATP在T4多聚核苷酸激酶的作用下标记 $0.1 \mathrm{~A}_{200}$ 单位的寡核苷酸。取 1μ g已标记了的寡核苷酸与 20 单位的内切酶，在 $20^{\circ} \mathrm{C}$ 条件下分别反应 2 小时和 20 小时。反应缓冲液含 70 mM Tris $\mathrm{HCl}(\mathrm{pH} 7.6), 10 \mathrm{mM} \mathrm{MgCl} 2,5 \mathrm{mM}$ DTT及适量的 NaCl 或 KCl （视酶的具体要求而定）。 20% 的PAGE（ 7 M 尿素）凝胶电泳分析，经放射自显影确定酶切百分率。

本实验采用自连接的察核苷酸作为对照。若底物有较长的回文结构，切割效率则可能因为出现发夹结构而降低。

酶	寡核苷酸序列	链长	切割率\％	
			2 hr	20 hr
Acc I	GGTCGACC	8	0	0
	CGGTCGACCG	10	0	0
	CCGGTCGACCGG	12	0	0
Afl III	CACATGTG	8	0	0
	CCACATGTGG	10	＞90	＞90
	CCCACATGTGGG	12	＞90	＞90
Asc I	GGCGCGCC	8	＞90	＞90
	AGGCGCGCCT	10	＞90	＞90
	TTGGCGCGCCAA	12	>90	＞90
Aval	CCCCGGGG	8	50	＞90
	CCCCCGGGGG	10	＞90	＞90
	TCCCCCGGGGGA	12	＞90	＞90
BamH I	CGGATCCG	8	10	25
	CGGGATCCCG	10	>90	>90
	CGCGGATCCGCG	12	＞90	＞90

核苷酸的物理特性 Tris缓冲液温度与 pH 的关系琼脂糖疑胶的分离范围
 限制性内切酶数据库

Bgl II	CAGATCTG GAAGATCTTC GGAAGATCTTCC	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ 75 \\ 25 \end{gathered}$	$\begin{gathered} 0 \\ >90 \\ >90 \end{gathered}$
BssH II	$\begin{gathered} \text { GGCGCGCC } \\ \text { AGGCGCGCCT } \\ \text { TTGGCGCGCCAA } \end{gathered}$	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 50 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ >90 \end{gathered}$
BstE II	GGGT（A／T）ACCC	9	0	10
BstX I	AACTGCAGAACCAATGCATTGG AAAACTGCAGCCAATGCATTGGAA CTGCAGAACCAATGCATTGGATGCAT	$\begin{aligned} & 22 \\ & 24 \\ & 27 \end{aligned}$	$\begin{gathered} 0 \\ 25 \\ 25 \end{gathered}$	$\begin{gathered} 0 \\ 50 \\ >90 \end{gathered}$
Cla I	CATCGATG GATCGATC CCATCGATGG CCCATCGATGGG	$\begin{gathered} 8 \\ 8 \\ 10 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ >90 \\ 50 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ >90 \\ 50 \end{gathered}$
EcoR I	GGAATTCC CGGAATTCCG CCGGAATTCCGG	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{aligned} & >90 \\ & >90 \\ & >90 \end{aligned}$	$\begin{aligned} & >90 \\ & >90 \\ & >90 \end{aligned}$
Hae III	$\begin{gathered} \text { GGGGCCCC } \\ \text { AGCGGCCGCT } \\ \text { TTGCGGCCGCAA } \end{gathered}$	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{aligned} & >90 \\ & >90 \\ & >90 \end{aligned}$	$\begin{aligned} & >90 \\ & >90 \\ & >90 \end{aligned}$
Hind III	CAAGCTTG CCAAGCTTGG CCCAAGCTTGGG	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 10 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 75 \end{gathered}$
Kpn I	GGGTACCC GGGGTACCCC CGGGGTACCCCG	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ >90 \\ >90 \end{gathered}$	$\begin{gathered} 0 \\ >90 \\ >90 \end{gathered}$
Mlu I	GACGCGTC CGACGCGTCG	$\begin{gathered} 8 \\ 10 \end{gathered}$	$\begin{gathered} 0 \\ 25 \end{gathered}$	$\begin{gathered} 0 \\ 50 \end{gathered}$
Nco I	$\begin{gathered} \text { CCCATGGG } \\ \text { CATGCCATGGCATG } \end{gathered}$	$\begin{gathered} 8 \\ 14 \end{gathered}$	$\begin{gathered} 0 \\ 50 \end{gathered}$	$\begin{gathered} 0 \\ 75 \end{gathered}$
Nde I	$\begin{gathered} \text { CCATATGG } \\ \text { CCCATATGGG } \\ \text { CGCCATATGGCG } \\ \text { GGGTTTCATATGAAACCC } \\ \text { GGAATTCCATATGGAATTCC } \\ \text { GGGAATTCCATATGGAATTCCC } \end{gathered}$	$\begin{gathered} 8 \\ 10 \\ 12 \\ 18 \\ 20 \\ 22 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 75 \\ 75 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ >90 \\ >90 \end{gathered}$
Nhe I	$\begin{gathered} \text { GGCTAGCC } \\ \text { CGGCTAGCCG } \\ \text { CTAGCTAGCTAG } \end{gathered}$	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ 10 \\ 10 \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 50 \end{gathered}$

Not I	TTGCGGCCGCAA ATTTGCGGCCGCTTTA AAATATGCGGCCGCTATAAA ATAAGAATGCGGCCGCTAAACTAT AAGGAAAAAAGCGGCCGCAAAAGGAAAA	$\begin{aligned} & 12 \\ & 16 \\ & 20 \\ & 24 \\ & 28 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 10 \\ 25 \\ 25 \end{gathered}$	$\begin{gathered} 0 \\ 10 \\ 10 \\ 90 \\ >90 \end{gathered}$
Nsi I	TGCATGCATGCA CCAATGCATTGGTTCTGCAGTT	$\begin{aligned} & 12 \\ & 22 \end{aligned}$	$\begin{gathered} 10 \\ >90 \end{gathered}$	$\begin{aligned} & >90 \\ & >90 \end{aligned}$
Pac I	TTAATTAA GTTAATTAAC CCTTAATTAAGG	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 25 \\ >90 \end{gathered}$
Pme I	GTTTAAAC GGTTTAAACC GGGTTTAAACCC AGCTTTGTTTAAACGGCGCGCCGG	$\begin{gathered} 8 \\ 10 \\ 12 \\ 24 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 75 \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 50 \\ >90 \end{gathered}$
Pst I	GCTGCAGC TGCACTGCAGTGCA AACTGCAGAACCAATGCATTGG AAAACTGCAGCCAATGCATTGGAA CTGCAGAACCAATGCATTGGATGCAT	$\begin{gathered} 8 \\ 14 \\ 22 \\ 24 \\ 26 \end{gathered}$	$\begin{gathered} 0 \\ 10 \\ >90 \\ >90 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 10 \\ >90 \\ >90 \\ 0 \end{gathered}$
Pvu I	CCGATCGG ATCGATCGAT TCGCGATCGCGA	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ 10 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 10 \end{gathered}$
Sac I	CGAGCTCG	8	10	10
Sac II	$\begin{gathered} \text { GCCGCGGC } \\ \text { TCCCCGCGGGGA } \end{gathered}$	$\begin{gathered} 8 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ 50 \end{gathered}$	$\begin{gathered} 0 \\ >90 \end{gathered}$
Sal I	GTCGACGTCAAAAGGCCATAGCGGCCGC GCGTCGACGTCTTGGCCATAGCGGCCGCGG ACGCGTCGACGTCGGCCATAGCGGCCGCGGAA	$\begin{aligned} & 28 \\ & 30 \\ & 32 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 10 \end{gathered}$	$\begin{gathered} 0 \\ 50 \\ 75 \end{gathered}$
Scal	GAGTACTC AAAAGTACTTTT	$\begin{gathered} 8 \\ 12 \end{gathered}$	$\begin{aligned} & 10 \\ & 75 \end{aligned}$	$\begin{aligned} & 25 \\ & 75 \end{aligned}$
Sma I	$\begin{gathered} \text { CCCGGG } \\ \text { CCCCGGGG } \\ \text { CCCCCGGGGG } \\ \text { TCCCCCGGGGGA } \end{gathered}$	$\begin{gathered} 6 \\ 8 \\ 10 \\ 12 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 10 \\ >90 \end{gathered}$	$\begin{gathered} 10 \\ 10 \\ 50 \\ >90 \end{gathered}$
Spe I	GACTAGTC GGACTAGTCC CGGACTAGTCCG CTAGACTAGTCTAG	$\begin{gathered} 8 \\ 10 \\ 12 \\ 14 \end{gathered}$	$\begin{gathered} 10 \\ 10 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} >90 \\ >90 \\ 50 \\ 50 \end{gathered}$
Sph I	GGCATGCC CATGCATGCATG ACATGCATGCATGT	$\begin{gathered} 8 \\ 12 \\ 14 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 10 \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 50 \end{gathered}$

Stu I	AAGGCCTT	8	>90	>90
	GAAGGCCTTC	10	>90	>90
	AAAAGGCCTTTT	12	>90	>90
Xba I	CTCTAGAG	8	0	0
	GCTCTAGAGC	10	>90	>90
	TGCTCTAGAGCA	12	75	>90
	CTAGTCTAGACTAG	14	75	>90
Xho I	CCTCGAGG	8	0	0
	CCCTCGAGGG	10	10	25
	CCGCTCGAGCGG	12	10	75
Xma I	CCCCGGGG	8	0	0
	CCCCCGGGGG	10	25	75
	CCCCCCGGGGGG	12	50	>90
	TCCCCCCGGGGGGA	14	>90	>90

北京海淀区王庄路1号 清华同方科技大厦B座6层B区 邮编：100083
电话：010－82378266／82378265传真：010－82378262 技术支持：support＠neb－china．com 咨询：info＠neb－china．com

[^0]: Privacy, Limitations, Warranty, Disclaimer, Copyright and Trademark

